TITLE Calcium dependent potassium channel
: Implemented in Rubin and Cleland (2006) J Neurophysiology
: Parameters from Bhalla and Bower (1993) J Neurophysiology
: Adapted from /usr/local/neuron/demo/release/nachan.mod - squid
: by Andrew Davison, The Babraham Institute [Brain Res Bulletin, 2000]
:Suffix from Kca3 to Kca3_1
NEURON {
THREADSAFE
SUFFIX Kca3_1
USEION k READ ek WRITE ik
USEION ca READ cai
RANGE gkbar, ik, Yconcdep, Yvdep
RANGE Yalpha, Ybeta, tauY, Y_inf
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
CONSTANT {
q10 = 3
}
PARAMETER {
v (mV)
dt (ms)
gkbar= 0.120 (mho/cm2) <0,1e9>
Ybeta = 0.05 (/ms)
cai (mM) := 1e-5 (mM)
}
STATE {
Y
}
ASSIGNED {
ik (mA/cm2)
Yalpha (/ms)
Yvdep
Yconcdep (/ms)
tauY (ms)
Y_inf
ek (mV)
qt
}
INITIAL {
rate(v,cai)
Y = Yalpha/(Yalpha + Ybeta)
qt = q10^((celsius-37 (degC))/10 (degC))
}
BREAKPOINT {
SOLVE state METHOD cnexp
ik = gkbar*Y*(v - ek)
}
DERIVATIVE state {
rate(v,cai)
Y' = Yalpha*(1-Y) - Ybeta*Y
}
PROCEDURE rate(v(mV),cai(mM)) {
vdep(v)
concdep(cai)
Yalpha = Yvdep*Yconcdep
tauY = 1/(Yalpha + Ybeta)
Y_inf = Yalpha/(Yalpha + Ybeta) /qt
}
PROCEDURE vdep(v(mV)) {
TABLE Yvdep FROM -100 TO 100 WITH 100
Yvdep = exp((v*1(/mV)+70)/27)
}
PROCEDURE concdep(cai(mM)) {
TABLE Yconcdep FROM 0 TO 0.01 WITH 1000
if (cai < 0.01) {
Yconcdep = 500(/ms)*( 0.015-cai*1(/mM) )/( exp((0.015-cai*1(/mM))/0.0013) -1 )
} else {
Yconcdep = 500(/ms)*0.005/( exp(0.005/0.0013) -1 )
}
}