// Artificial cells no longer need a default section.
//Network cell templates
// BistratifiedCell
// Simplified version (BPG 27-9-08)
// - geometry and channels from Santhakumar et al 2005
// - geometry modified to preserve VCUs different dendrites
begintemplate CA1BistratifiedCell
public is_art
public init, topol, basic_shape, subsets, geom, biophys
public pre_list, connect2target
public soma, radT2, radM2, radt2, radT1
public radM1, radt1, oriT1, oriM1, orit1
public oriT2, oriM2, orit2
public all
objref pre_list
proc init() {
topol()
subsets()
geom()
biophys()
geom_nseg()
pre_list = new List()
synapses()
}
create soma, radT2, radM2, radt2, radT1
create radM1, radt1, oriT1, oriM1, orit1
create oriT2, oriM2, orit2
proc topol() { local i
connect radT2(0), soma(1)
connect radM2(0), radT2(1)
connect radt2(0), radM2(1)
connect radT1(0), soma(0)
connect radM1(0), radT1(1)
connect radt1(0), radM1(1)
connect oriT1(0), soma(0)
connect oriM1(0), oriT1(1)
connect orit1(0), oriM1(1)
connect oriT2(0), soma(1)
connect oriM2(0), oriT2(1)
connect orit2(0), oriM2(1)
//basic_shape()
}
proc basic_shape() {
soma {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(15, 0, 0, 1)}
radT2 {pt3dclear() pt3dadd(15, 0, 0, 1) pt3dadd(45, 30, 0, 1)}
radM2 {pt3dclear() pt3dadd(45, 30, 0, 1) pt3dadd(75, 60, 0, 1)}
radt2 {pt3dclear() pt3dadd(75, 60, 0, 1) pt3dadd(90, 75, 0, 1)}
radT1 {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(-14, 15, 0, 1)}
radM1 {pt3dclear() pt3dadd(-14, 15, 0, 1) pt3dadd(-29, 30, 0, 1)}
radt1 {pt3dclear() pt3dadd(-29, 30, 0, 1) pt3dadd(-44, 45, 0, 1)}
oriT1 {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(-29, -29, 0, 1)}
oriM1 {pt3dclear() pt3dadd(-29, -29, 0, 1) pt3dadd(-59, -59, 0, 1)}
orit1 {pt3dclear() pt3dadd(-59, -59, 0, 1) pt3dadd(-89, -89, 0, 1)}
oriT2 {pt3dclear() pt3dadd(15, 0, 0, 1) pt3dadd(45, -29, 0, 1)}
oriM2 {pt3dclear() pt3dadd(45, -29, 0, 1) pt3dadd(75, -59, 0, 1)}
orit2 {pt3dclear() pt3dadd(75, -59, 0, 1) pt3dadd(105, -89, 0, 1)}
}
objref all
proc subsets() { local i
objref all
all = new SectionList()
soma all.append()
radT2 all.append()
radM2 all.append()
radt2 all.append()
radT1 all.append()
radM1 all.append()
radt1 all.append()
oriT1 all.append()
oriM1 all.append()
orit1 all.append()
oriT2 all.append()
oriM2 all.append()
orit2 all.append()
}
proc geom() {
forsec all { }
soma { L = 20 diam = 10 }
radT2 { L = 100 diam = 4 }
radM2 { L = 100 diam = 3 }
radt2 { L = 200 diam = 2 }
radT1 { L = 100 diam = 4 }
radM1 { L = 100 diam = 3 }
radt1 { L = 200 diam = 2 }
oriT1 { L = 100 diam = 2 }
oriM1 { L = 100 diam = 1.5 }
orit1 { L = 100 diam = 1 }
oriT2 { L = 100 diam = 2 }
oriM2 { L = 100 diam = 1.5 }
orit2 { L = 100 diam = 1 }
}
external lambda_f
proc geom_nseg() {
forsec all { nseg = int((L/(0.1*lambda_f(100))+.9)/2)*2 + 1 }
}
proc biophys() {
gna = 0.2
soma {
insert ichan2
gnatbar_ichan2 = gna // 0.12 //original 0.030 to .055
gkfbar_ichan2 = 0.013 //original 0.015
gl_ichan2 = 0.00018
cm=1.4
}
radt1 {
insert ichan2
gnatbar_ichan2 = gna //0.4 //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
radt2 {
insert ichan2
gnatbar_ichan2 = gna //0.4 //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
radM1 {
insert ichan2
gnatbar_ichan2 = gna //0.3 //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
radM2 {
insert ichan2
gnatbar_ichan2 = gna //0.3 //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
radT1 {
insert ichan2
gnatbar_ichan2 = gna //0.2 //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
radT2 {
insert ichan2
gnatbar_ichan2 = gna //0.2 //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
oriT1 {
insert ichan2
gnatbar_ichan2 = gna //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
oriT2 {
insert ichan2
gnatbar_ichan2 = gna //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
oriM1 {
insert ichan2
gnatbar_ichan2 = gna //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
oriM2 {
insert ichan2
gnatbar_ichan2 = gna //original 0.015
gkfbar_ichan2 = 0.013
gl_ichan2 = 0.00018
cm=1.4
}
orit1 {
insert ichan2
gnatbar_ichan2 = gna // Sodium conductance (original 0.015)
gkfbar_ichan2 = 0.013 // Delayed K+ rectifier (fast)
gl_ichan2 = 0.00018 // Leak conductance
cm=1.4
}
orit2 {
insert ichan2
gnatbar_ichan2 = gna // Sodium conductance (original 0.015)
gkfbar_ichan2 = 0.013 // Delayed K+ rectifier (fast)
gl_ichan2 = 0.00018 // Leak conductance
cm=1.4
}
forsec all {
insert ccanl
catau_ccanl = 10 // Time constant for decay of intracellular Ca2+
caiinf_ccanl = 5.e-6 // Steady-state intracellular Ca2+ concentration
insert borgka
gkabar_borgka = 0.00015 // A-type K+ conductance
insert nca // N-type Ca2+ conductance
gncabar_nca = 0.0008 // check to modify- original 0.004
insert lca
glcabar_lca = 0.005 // L-type Ca2+ conductance
insert gskch
gskbar_gskch = 0.000002 // Ca2+-dependent K (SK) conductance
insert cagk2
gkbar_cagk2 = 0.0002 // Ca2+ and Voltage-dependent K+ (BK) conductance
Ra = 100
enat = 55
ekf = -90
ek = -90
elca = 130
esk = -90
el_ichan2 = -60 //-60.06
cao_ccanl = 2
} // make catau slower70e-3 cao=2 cai=50.e-6
}
obfunc connect2target() { localobj nc //$o1 target point process, optional $o2 returned NetCon
soma nc = new NetCon(&v(1), $o1)
nc.threshold = -10
if (numarg() == 2) { $o2 = nc } // for backward compatibility
return nc
}
objref syn_
proc synapses() {
/* E0 */ radM1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA EC (not used)
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E1 */ radM2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA EC (not used)
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E2 */ radM1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E3 */ radM2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E4 */ radT1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E5 */ radT2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E6 */ oriT1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA PC
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E7 */ oriT2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA PC
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* I8 */ soma syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A Neighboring bistratified cell
syn_.tau1 = 1
syn_.tau2 = 8
syn_.e = -75
/* I9 */ soma syn_ = new MyExp2Syn(0.6) pre_list.append(syn_) // GABA-A Basket cell
syn_.tau1 = 1
syn_.tau2 = 8
syn_.e = -75
/* I10 */ oriT1 syn_ = new MyExp2Syn(0.6) pre_list.append(syn_) // GABA-A Septum
syn_.tau1 = 1
syn_.tau2 = 8
syn_.e = -75
/* I11 */ oriT2 syn_ = new MyExp2Syn(0.6) pre_list.append(syn_) // GABA-A Septum
syn_.tau1 = 1
syn_.tau2 = 8
syn_.e = -75
/* I12 */ oriT1 syn_ = new MyExp2Syn(0.6) pre_list.append(syn_) // GABA-B Septum
syn_.tau1 = 35
syn_.tau2 = 100
syn_.e = -75
/* I13 */ oriT2 syn_ = new MyExp2Syn(0.6) pre_list.append(syn_) // GABA-B Septum
syn_.tau1 = 35
syn_.tau2 = 100
syn_.e = -75
/* E14 */ radt1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 pyramidal cell
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
/* E15 */ radt2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 pyramidal cell
syn_.tau1 = 0.5
syn_.tau2 = 3
syn_.e = 0
}
func is_art() { return 0 }
endtemplate CA1BistratifiedCell