## This a NEURON + Python2 script associated with the paper:
Ruben A. Tikidji-Hamburyan, Carmen C. Canavier
**Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability **
*eNeuro (in press)*
## Requirements
To use this scripts you need **Python 2.7** and python's libraries:
- numpy
- scipy
- matplotlib and LaTeX for correct graphical interface
Under Ubuntu or any other Debian based Linux, run *sudo apt-get install python-numpy python-scipy python-matplotlib texlive-full*.
You can use *yum* or *zymm* under RadHad or SUSE based Linux distributions.
## Examples from the paper
To run simulations:
- nrnivmodl
- nrngui -nogui -python network.py **[parameters]**
**[paramters]** for different figures are given below
### Figure 3A
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133
/neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9
/nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
`
### Figure 3B
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133
/neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20. /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9
/nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
`
### Figure 3C [$^2$](#note2)
`
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY\*1e-2 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=XXX\*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0
/tstop=2500 /cliptrn=500
`
where XXX is a synaptic conductance and YYYY is a level of noise. The scale 1e-2 converts nA into uA/cm2 and uS into mS/cm2.
### Figure 3D [$^2$](#note2)
`
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY*1e-2 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=XXX*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-75.0
/tstop=2500 /cliptrn=500
`
where XXX is a synaptic conductance and YYYY is a level of noise.
### Figure 4A and supplementary movie sp1-20190619163238.mp4 [$^1$](#note1)
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133
/neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist="UNIFORM"
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
`
### Figure 4B and supplementary movie sp2-20190619165631.mp4 [$^1$](#note1)
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133
/neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp='u',0.02,0.037
/synapse/weight=5e-4 /synapse/delay=0.7,3.5 /delay-dist="UNIFORM"
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
`
### Figure 5A
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133
/neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9
/nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
`
### Figure 5B
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /tv=0,1000 /ncon=\'b\',0.133
/neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-50.,20. /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/nrnFRhist/range=-0.05,0.85 /nrnFRhist/bins=9
/nrnFRhist/xnorm=True /nrnFRhist/ymax=0.5 /sortbysk=FR /nrnISI=100 /nrnFRhist/part=True
`
### Figure 5C [$^2$](#note2)
`
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY*1e-2 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=XXX*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0
/tstop=2500 /cliptrn=500
`
where XXX is a synaptic conductance and YYYY is a level of noise.
### Figure 5D [$^2$](#note2)
`
nrngui -nogui -python network.py /git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=YYYY*1e-2 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=XXX*1e-2 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.0
/tstop=2500 /cliptrn=500
`
where XXX is a synaptic conductance and YYYY is a level of noise.
### Figure 6A and supplementary movie sp3-20190619103132.mp4 [$^1$](#note1)
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133
/neuron/Type=1 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
`
### Figure 6B and supplementary movie sp4-20190619104959.mp4 [$^1$](#note1)
`
nrngui -nogui -python network.py /gui=ON /git=False /preview=ON /sortbysk=I /tv=400,500 /ncell=300 /ncon=\'b\',0.133
/neuron/Type=2 /neuron/Istdev=1.5e-2 /neuron/Vinit=-68 /neuron/Iapp=\'u\',0.02,0.037
/synapse/weight=15e-4 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/Esyn=-65.
/ttFFT=False /tracetail=p2eLFP /N2NHI=False
/pop-pp-view=True /PhaseLims=(-76,-20),(0.3,0.6) /pop-pp-view-color=True
`
### Figure 7 A1
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I
/singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=5.e-06 /singmod/per=200.0
`
### Figure 7 A2
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I
/singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=5.e-06 /singmod/per=200.0
`
### Figure 7 B1
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I
/singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=2.e-06 /singmod/per=100.0
`
### Figure 7 B2
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133 /corefunc=24
/synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I
/singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=2.e-06 /singmod/per=100.0
`
### Any point on heatmap Figure 7 C1 [$^2$](#note2)
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True
/singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=20000.0 /tstop=20000.0 /singmod/gmax=XXXX*1e-2 /singmod/per=1000./YYYY
`
where XXXX is modulation conductance in $\mu A/cm^2$ and YYYY is modulation frequency in Hz
### Any point on heatmap Figure 7 C2 [$^2$](#note2)
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-75.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True
/singmod/E=-75.0 /singmod/tstart=0 /singmod/tstop=20000.0 /tstop=20000.0 /singmod/gmax=XXXX*1e-2 /singmod/per=1000./YYYY
`
where XXXX is modulation conductance in $\mu A/cm^2$ and YYYY is modulation frequency in Hz
### Figure 8 A1
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68
/gui=ON /git=ON /preview=ON /tv=0,500
/synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3
/singmod/tstart=-100 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=200
/tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
`
### Figure 8 A2
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68
/gui=ON /git=ON /preview=ON /tv=0,500
/synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3
/singmod/tstart=-100 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=200
/tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
`
### Figure 8 B1
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68
/gui=ON /git=ON /preview=ON /tv=0,500 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3
/singmod/tstart=-50 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=100
/tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
`
### Figure 8 B2
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Iapp=2.85e-2 /neuron/Istdev=3.e-2 /neuron/Vinit=-68
/gui=ON /git=ON /preview=ON /tv=0,500 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM /synapse/weight=1e-3
/singmod/tstart=-50 /singmod/tstop=methods['tv'][1] /singmod/gmax=2e-6 /singmod/per=100
/tracetail=p2eLFP /ttFFT=False /p2eLFP_max=250. /sortbysk=T
`
### Figure 9 A
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I
/singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=8.e-06 /singmod/per=200.0
`
### Figure 9 B
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=ON /preview=ON /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True /sortbysk=I
/singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tv=0.,2000.0 /singmod/gmax=8.e-06 /singmod/per=200.0
`
### Any point on heatmap Figure 9 C1 [$^2$](#note2)
`
nrngui -nogui -python network.py
/neuron/Type=1 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True
/singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tstop=2000.0 /singmod/gmax=XXXX*1.e-02 /singmod/per=1000./YYYY
`
where XXXX is modulation conductance in $\mu A/cm^2$ and YYYY is modulation frequency in Hz
### Any point on heatmap Figure 9 C2 [$^2$](#note2)
`
nrngui -nogui -python network.py
/neuron/Type=2 /neuron/Vinit=-51.0,20.0 /neuron/Istdev=0.03 /neuron/Iapp=\'u\',0.02,0.037
/git=False /gui=False /preview=False /ncell=300 /ncon=\'b\',0.133
/synapse/weight=0.001 /synapse/Esyn=-65.0 /synapse/delay=0.7,3.5 /delay-dist=UNIFORM
/tracetail=p2eLFP /p2eLFP_max=250 /ttFFT=False /PAC-VS=True
/singmod/E=-65.0 /singmod/tstart=0 /singmod/tstop=2000.0 /tstop=2000.0 /singmod/gmax=XXXX*1.e-02 /singmod/per=1000./YYYY
`
where XXXX is modulation conductance in $\mu A/cm^2$ and YYYY is modulation frequency in Hz
### For Figures 10
Use parameters for Figures 3C, 3D, 5C, 5D, 9C1, or 9C2 as above and add `/neuron/distribution/F=\'n\',1.04,0.4` to the end of command line.
### Notes
1.
For Figures 4A, 4B, 6A, and 6B, if you click on phase-plot window, you can explore evolution of population dynamics using page-up/page-down keys.
2.
Simulations for Figures 3C, 3D, 5C, 5D, 7C, and 9C will not show anything on the screen. All results are saved in the `network.simdb` file.
`simdb` has a very simple format: each simulation is a line. Column `:` separates recorded fields. Each field is a couple `key=value` with the equal symbol as a separator.
*An example of fields in a simulation record* shows R2-index of network synchronization, spike-per-cycle, and neurons firing rate to network frequency ratio:
`/R2-results/R2=0.80846372802:/R2-results/spc=88.1:/R2-results/stdr_Fr/Fnet=0.264655449759`
## Files in this directory
| File | Description |
|:------------------|:-------------------------------------------------|
| network.py | main script |
|norm_translation.py| subroutine for synapses amplitude normalization (wasn't used in the paper) |
|type21v02.mod | NEURON module for membrane currents of a single neuron|
|innp.mod | noise current generator, writen by Ted Carnevale |
| sinGstim.mod | module for sinusoidal conductance modulation |
| sinIstim.mod | module for sinusoidal current modulation (wasn't used in the paper) |
## Changelog
2022-05: Updated MOD files to contain valid C++ and be compatible with the upcoming versions 8.2 and 9.0 of NEURON.