COMMENT
Original Hodgkin and Huxley model (J.Physiol. (Lond.) 117:500-544 (1952))
with stochastic conductances, using uncoupled (2-state) activation particles and
Diffusion approximation (Fox) algorithm.
Membrane voltage is in absolute mV and has been reversed in polarity
from the original HH convention and shifted to reflect a resting potential
of -65 mV.
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
NEURON {
SUFFIX hh2F
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el, gna, gk
}
PARAMETER {
gnabar = .12 (S/cm2) <0,1e9>
gkbar = .036 (S/cm2) <0,1e9>
gl = .0003 (S/cm2) <0,1e9>
el = -54.3 (mV)
NNa = 500
NK = 160
}
STATE {
m h n
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
ek (mV)
dt (ms)
gna (S/cm2)
gk (S/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
alpha_m (/ms)
alpha_h (/ms)
alpha_n (/ms)
beta_m (/ms)
beta_h (/ms)
beta_n (/ms)
SDn
SDm
SDh
}
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gnabar*m*m*m*h
ina = gna*(v - ena)
gk = gkbar*n*n*n*n
ik = gk*(v - ek)
il = gl*(v - el)
}
INITIAL {
rates(v)
m=alpha_m/(alpha_m + beta_m)
h=alpha_h/(alpha_h + beta_h)
n=alpha_n/(alpha_n + beta_n)
}
DERIVATIVE states {
rates(v)
m' = (1-m)*alpha_m - m*beta_m + normrand(0,SDm)
h' = (1-h)*alpha_h - h*beta_h + normrand(0,SDh)
n' = (1-n)*alpha_n - n*beta_n + normrand(0,SDn)
}
LOCAL q10
PROCEDURE rates(v(mV)) { :Computes rate and other constants at current v.
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
alpha_n = q10*0.01*(v+55)/(1-exp(-(v+55)/10))
beta_n = q10*0.125*exp(-(v+65)/80)
alpha_m = q10*0.1*(v+40)/(1-exp(-(v+40)/10))
beta_m = q10*4*exp(-(v+65)/18)
alpha_h = q10*0.07*exp(-(v+65)/20)
beta_h = q10/(1+exp(-(v+35)/10))
SDn = sqrt(fabs(alpha_n*(1-n)+beta_n*n)/(dt*NK*4))
SDm = sqrt(fabs(alpha_m*(1-m)+beta_m*m)/(dt*NNa*3))
SDh = sqrt(fabs(alpha_h*(1-h)+beta_h*h)/(dt*NNa))
UNITSON
}