COMMENT
Original Hodgkin and Huxley model (J.Physiol. (Lond.) 117:500-544 (1952))
with stochastic conductances, using coupled activation particles (5-state K
channels, 8-state Na channels) and Markov Chain modeling (Chow & White algorithm)
Membrane voltage is in absolute mV and has been reversed in polarity
from the original HH convention and shifted to reflect a resting potential
of -65 mV.
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
NEURON {
SUFFIX hh58CW
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el, NNa, NK, next_evK, next_evNa, Nast, Kst
}
PARAMETER {
gnabar = .12 (S/cm2) <0,1e9>
gkbar = .036 (S/cm2) <0,1e9>
gl = .0003 (S/cm2) <0,1e9>
el = -54.3 (mV)
NNa = 5000
NK = 1600
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
ek (mV)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
alpha_m (/ms)
alpha_h (/ms)
alpha_n (/ms)
beta_m (/ms)
beta_h (/ms)
beta_n (/ms)
Nast[8]
Kst[5]
Nart[20] (/ms)
Krt[8] (/ms)
sumrtNa (/ms)
sumrtK (/ms)
cumsumNa[20](/ms)
cumsumK[8] (/ms)
next_evNa (ms)
next_evK (ms)
prev_ev (ms)
ev (/ms)
M
N
H
}
STATE {mock}
BREAKPOINT {
SOLVE mula METHOD cnexp
ina = gnabar*Nast[7]*(v - ena)/NNa
ik = gkbar*Kst[4]*(v - ek)/NK
il = gl*(v - el)
}
INITIAL {
LOCAL stsum, q10
q10 = 3^((celsius - 6.3)/10)
alpha_m = q10*0.1*(v+40)/(1-exp(-(v+40)/10))
beta_m = q10*4*exp(-(v+65)/18)
alpha_h = q10*0.07*exp(-(v+65)/20)
beta_h = q10/(1+exp(-(v+35)/10))
alpha_n = q10*0.01*(v+55)/(1-exp(-(v+55)/10))
beta_n = q10*0.125*exp(-(v+65)/80)
M=alpha_m/beta_m
H=alpha_h/beta_h
N=alpha_n/beta_n
stsum=(1+H)*(1+M)^3
Nast[0]=floor(NNa/stsum+0.5)
Nast[1]=floor(NNa*3*M/stsum+0.5)
Nast[2]=floor(NNa*3*M^2/stsum+0.5)
Nast[3]=floor(NNa*M^3/stsum+0.5)
Nast[4]=floor(NNa*H/stsum+0.5)
Nast[5]=floor(NNa*H*3*M/stsum+0.5)
Nast[6]=floor(NNa*H*3*M^2/stsum+0.5)
Nast[7]=floor(NNa*H*M^3/stsum+0.5)
ratesNa(v)
next_evNa = - log(scop_random())/sumrtNa
stsum=(1+N)^4
Kst[0]=floor(NK/stsum+0.5)
Kst[1]=floor(NK*4*N/stsum+0.5)
Kst[2]=floor(NK*6*N^2/stsum+0.5)
Kst[3]=floor(NK*4*N^3/stsum+0.5)
Kst[4]=floor(NK*N^4/stsum+0.5)
ratesK(v)
next_evK = - log(scop_random())/sumrtK
}
DERIVATIVE mula {
while (t>= next_evNa){
transNa()
}
while (t>= next_evK){
transK()
}
mock'=0
}
LOCAL q10
PROCEDURE ratesNa(v(mV)) { :Computes rate and other constants at current v.
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
alpha_m = q10*0.1*(v+40)/(1-exp(-(v+40)/10))
beta_m = q10*4*exp(-(v+65)/18)
alpha_h = q10*0.07*exp(-(v+65)/20)
beta_h = q10/(1+exp(-(v+35)/10))
Nart[0]=3*alpha_m*Nast[0]
Nart[1]=beta_m*Nast[1]
Nart[2]=2*alpha_m*Nast[1]
Nart[3]=2*beta_m*Nast[2]
Nart[4]=alpha_m*Nast[2]
Nart[5]=3*beta_m*Nast[3]
Nart[6]=alpha_h*Nast[0]
Nart[7]=beta_h*Nast[4]
Nart[8]=alpha_h*Nast[1]
Nart[9]=beta_h*Nast[5]
Nart[10]=alpha_h*Nast[2]
Nart[11]=beta_h*Nast[6]
Nart[12]=alpha_h*Nast[3]
Nart[13]=beta_h*Nast[7]
Nart[14]=3*alpha_m*Nast[4]
Nart[15]=beta_m*Nast[5]
Nart[16]=2*alpha_m*Nast[5]
Nart[17]=2*beta_m*Nast[6]
Nart[18]=alpha_m*Nast[6]
Nart[19]=3*beta_m*Nast[7]
sumrtNa=0
FROM ii=0 TO 19 {
sumrtNa = sumrtNa + Nart[ii]
cumsumNa[ii] = sumrtNa
}
FROM ii=0 TO 19 {cumsumNa[ii] = cumsumNa[ii] / sumrtNa}
UNITSON
}
PROCEDURE ratesK(v(mV)) {
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
alpha_n = q10*0.01*(v+55)/(1-exp(-(v+55)/10))
beta_n = q10*0.125*exp(-(v+65)/80)
Krt[0]=4*alpha_n*Kst[0]
Krt[1]=beta_n*Kst[1]
Krt[2]=3*alpha_n*Kst[1]
Krt[3]=2*beta_n*Kst[2]
Krt[4]=2*alpha_n*Kst[2]
Krt[5]=3*beta_n*Kst[3]
Krt[6]=alpha_n*Kst[3]
Krt[7]=4*beta_n*Kst[4]
sumrtK=0
FROM ii=0 TO 7 {
sumrtK = sumrtK + Krt[ii]
cumsumK[ii] = sumrtK
}
FROM ii=0 TO 7 {cumsumK[ii] = cumsumK[ii] / sumrtK}
UNITSON
}
PROCEDURE transK() {
ratesK(v)
ev = scop_random()*1(/ms)
if (ev <= cumsumK[0]) {
Kst[0]=Kst[0]-1
Kst[1]=Kst[1]+1
}
if (cumsumK[0] < ev && ev <= cumsumK[1]) {
Kst[0]=Kst[0]+1
Kst[1]=Kst[1]-1
}
if (cumsumK[1] < ev && ev <= cumsumK[2]) {
Kst[1]=Kst[1]-1
Kst[2]=Kst[2]+1
}
if (cumsumK[2] < ev && ev <= cumsumK[3]) {
Kst[1]=Kst[1]+1
Kst[2]=Kst[2]-1
}
if (cumsumK[3] < ev && ev <= cumsumK[4]) {
Kst[2]=Kst[2]-1
Kst[3]=Kst[3]+1
}
if (cumsumK[4] < ev && ev <= cumsumK[5]) {
Kst[2]=Kst[2]+1
Kst[3]=Kst[3]-1
}
if (cumsumK[5] < ev && ev <= cumsumK[6]) {
Kst[3]=Kst[3]-1
Kst[4]=Kst[4]+1
}
if (cumsumK[6] < ev && ev <= cumsumK[7]) {
Kst[3]=Kst[3]+1
Kst[4]=Kst[4]-1
}
prev_ev = next_evK
next_evK = prev_ev - log(scop_random())/sumrtK
}
PROCEDURE transNa() {
ratesNa(v)
ev = scop_random()*1(/ms)
if (ev <= cumsumNa[0]) {
Nast[0]=Nast[0]-1
Nast[1]=Nast[1]+1
}
if (cumsumNa[0] < ev && ev <= cumsumNa[1]) {
Nast[0]=Nast[0]+1
Nast[1]=Nast[1]-1
}
if (cumsumNa[1] < ev && ev <= cumsumNa[2]) {
Nast[1]=Nast[1]-1
Nast[2]=Nast[2]+1
}
if (cumsumNa[2] < ev && ev <= cumsumNa[3]) {
Nast[1]=Nast[1]+1
Nast[2]=Nast[2]-1
}
if (cumsumNa[3] < ev && ev <= cumsumNa[4]) {
Nast[2]=Nast[2]-1
Nast[3]=Nast[3]+1
}
if (cumsumNa[4] < ev && ev <= cumsumNa[5]) {
Nast[2]=Nast[2]+1
Nast[3]=Nast[3]-1
}
if (cumsumNa[5] < ev && ev <= cumsumNa[6]) {
Nast[0]=Nast[0]-1
Nast[4]=Nast[4]+1
}
if (cumsumNa[6] < ev && ev <= cumsumNa[7]) {
Nast[0]=Nast[0]+1
Nast[4]=Nast[4]-1
}
if (cumsumNa[7] < ev && ev <= cumsumNa[8]) {
Nast[1]=Nast[1]-1
Nast[5]=Nast[5]+1
}
if (cumsumNa[8] < ev && ev <= cumsumNa[9]) {
Nast[1]=Nast[1]+1
Nast[5]=Nast[5]-1
}
if (cumsumNa[9] < ev && ev <= cumsumNa[10]) {
Nast[2]=Nast[2]-1
Nast[6]=Nast[6]+1
}
if (cumsumNa[10] < ev && ev <= cumsumNa[11]) {
Nast[2]=Nast[2]+1
Nast[6]=Nast[6]-1
}
if (cumsumNa[11] < ev && ev <= cumsumNa[12]) {
Nast[3]=Nast[3]-1
Nast[7]=Nast[7]+1
}
if (cumsumNa[12] < ev && ev <= cumsumNa[13]) {
Nast[3]=Nast[3]+1
Nast[7]=Nast[7]-1
}
if (cumsumNa[13] < ev && ev <= cumsumNa[14]) {
Nast[4]=Nast[4]-1
Nast[5]=Nast[5]+1
}
if (cumsumNa[14] < ev && ev <= cumsumNa[15]) {
Nast[4]=Nast[4]+1
Nast[5]=Nast[5]-1
}
if (cumsumNa[15] < ev && ev <= cumsumNa[16]) {
Nast[5]=Nast[5]-1
Nast[6]=Nast[6]+1
}
if (cumsumNa[16] < ev && ev <= cumsumNa[17]) {
Nast[5]=Nast[5]+1
Nast[6]=Nast[6]-1
}
if (cumsumNa[17] < ev && ev <= cumsumNa[18]) {
Nast[6]=Nast[6]-1
Nast[7]=Nast[7]+1
}
if (cumsumNa[18] < ev && ev <= cumsumNa[19]) {
Nast[6]=Nast[6]+1
Nast[7]=Nast[7]-1
}
prev_ev = next_evNa
next_evNa = prev_ev - log(scop_random())/sumrtNa
}