TITLE hh.mod squid sodium, potassium, and leak channels
COMMENT
This is the original Hodgkin-Huxley treatment for the set of sodium,
potassium, and leakage channels found in the squid giant axon membrane.
("A quantitative description of membrane current and its application
conduction and excitation in nerve" J.Physiol. (Lond.) 117:500-544 (1952).)
Membrane voltage is in absolute mV and has been reversed in polarity
from the original HH convention and shifted to reflect a resting potential
of -65 mV.
Remember to set celsius=6.3 (or whatever) in your HOC file.
See squid.hoc for an example of a simulation using this model.
SW Jaslove 6 March, 1992
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
NEURON {
SUFFIX hhdet
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el, gna, gk
}
PARAMETER {
gnabar = .12 (S/cm2) <0,1e9>
gkbar = .036 (S/cm2) <0,1e9>
gl = .0003 (S/cm2) <0,1e9>
el = -54.3 (mV)
}
STATE {
m h n
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
ek (mV)
gna (S/cm2)
gk (S/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
alpha_m (/ms)
alpha_h (/ms)
alpha_n (/ms)
beta_m (/ms)
beta_h (/ms)
beta_n (/ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gnabar*m*m*m*h
ina = gna*(v - ena)
gk = gkbar*n*n*n*n
ik = gk*(v - ek)
il = gl*(v - el)
}
INITIAL {
rates(v)
m=alpha_m/(alpha_m + beta_m)
h=alpha_h/(alpha_h + beta_h)
n=alpha_n/(alpha_n + beta_n)
}
DERIVATIVE states {
rates(v)
m' = (1-m)*alpha_m - m*beta_m
h' = (1-h)*alpha_h - h*beta_h
n' = (1-n)*alpha_n - n*beta_n
}
LOCAL q10
PROCEDURE rates(v(mV)) { :Computes rate and other constants at current v.
UNITSOFF
q10 = 3^((celsius - 6.3)/10)
alpha_n = q10*0.01*(v+55)/(1-exp(-(v+55)/10))
beta_n = q10*0.125*exp(-(v+65)/80)
alpha_m = q10*0.1*(v+40)/(1-exp(-(v+40)/10))
beta_m = q10*4*exp(-(v+65)/18)
alpha_h = q10*0.07*exp(-(v+65)/20)
beta_h = q10/(1+exp(-(v+35)/10))
}