% Rubinstein model of Ranvier Node's action potentials as in
% Rubinstein JT (1995) Biophys J 68: 779-785.
% Mino H, Rubinstein JT, White JA (2002) Ann Biomed Eng 30: 578-587.
% Bruce IC (2007) Ann Biomed Eng 35: 315-318;
% Voltage is shifted so that resting voltage = 0 mV (the reversal of the leak)
% This script simulates 1000 sweeps per stimulus and calculates
% firing efficiency, mean firing time and firing time variance
% 100 (nsim) simultaneous sweeps, 10 times
% Lines 44, 60, 61, 112 and 113 are intended to make a voltage trace
% It is advisable to reduce nsim before uncommenting them
%
% Coupled activation particles, 8-state Na channel
% Diffusion Approximation with steady state values of variables in the random term
nsim=10;
gNa=0.02569*265; %mS/cm2
ENa=144; %mV
Cm=0.0000714*265; Rm=1953.49/265;
NNa=1000;
Tstop=1; dt=0.001; %ms
points = round(Tstop/dt);
Idel=0; Idur=0.1; %ms, ms
threshold=80;
NaNs=0;
Iamp=6;
tic()
p=1;
% Uncomment this only with a small nsim
vrec = zeros(points,nsim);
v = 0*ones(1,nsim);
am=1.872*(v-25.41)./(1-exp((25.41-v)/6.06));
bm=3.973*(21-v)./(1-exp((v-21)/9.41));
ah=-0.549*(27.74+v)./(1-exp((v+27.74)/9.06));
bh=(22.57)./(1+exp((56-v)/12.5));
M=am./bm;
H=ah./bh;
statesum=(1+H).*(1+M).^3;
s=[ones(1,nsim);3*M;3*M.^2;M.^3;H;3*M.*H;3*M.^(2).*H;M.^(3).*H]./(ones(8,1)*statesum);
firetime=zeros(1,nsim);
firing=zeros(1,nsim);
for t = dt:dt:Tstop
vrec(p,:) = v; %uncomment with small nsim
p=p+1;
if any(~firing&v>=threshold)
ind=find(v>=threshold&~firing);
firetime(ind)=t;
firing(ind)=1;
end
am=1.872*(v-25.41)./(1-exp((25.41-v)/6.06));
bm=3.973*(21-v)./(1-exp((v-21)/9.41));
ah=-0.549*(27.74+v)./(1-exp((v+27.74)/9.06));
bh=(22.57)./(1+exp((56-v)/12.5));
Iapp=Iamp*(t>Idel&t<(Idel+Idur));
Imemb=-Iapp+gNa.*s(8,:).*(v-ENa)+v/Rm;
% deterministic transition matrix
transition=[3*am.*s(1,:)-(2*am+bm+ah).*s(2,:)+2*bm.*s(3,:)+bh.*s(6,:);
2*am.*s(2,:)-(2*bm+am+ah).*s(3,:)+3*bm.*s(4,:)+bh.*s(7,:);
am.*s(3,:)-(3*bm+ah).*s(4,:)+bh.*s(8,:);
-(3*am+bh).*s(5,:)+bm.*s(6,:)+ah.*s(1,:);
3*am.*s(5,:)-(2*am+bm+bh).*s(6,:)+2*bm.*s(7,:)+ah.*s(2,:);
2*am.*s(6,:)-(2*bm+am+bh).*s(7,:)+3*bm.*s(8,:)+ah.*s(3,:);
am.*s(7,:)-(3*bm+bh).*s(8,:)+ah.*s(4,:)];
s(s<0)=-s(s<0);
for ii = 1:nsim %because this algorithm needs a matrix operation (line 90) it has to be done iterating over independent simulations
ami=am(ii);bmi=bm(ii);ahi=ah(ii);bhi=bh(ii);
Dmtx=[3*ami.*s(1,ii)+(2*ami+bmi+ahi).*s(2,ii)+2*bmi.*s(3,ii)+bhi.*s(6,ii),-2*(ami.*s(2,ii)+bmi.*s(3,ii)),0,0,-(ahi.*s(2,ii)+bhi.*s(6,ii)),0,0;
-2*(ami.*s(2,ii)+bmi.*s(3,ii)),2*ami.*s(2,ii)+(ami+2*bmi+ahi).*s(3,ii)+3*bmi.*s(4,ii)+bhi.*s(7,ii),-(ami.*s(3,ii)+3*bmi.*s(4,ii)),0,0,-(ahi.*s(3,ii)+bhi.*s(7,ii)),0;
0,-(ami.*s(3,ii)+3*bmi.*s(4,ii)),ami.*s(3,ii)+(3*bmi+ahi).*s(4,ii)+bhi.*s(8,ii),0,0,0,-(ahi*s(4,ii)+bhi.*s(8,ii));
0,0,0,ahi.*s(1,ii)+(3*ami+bhi).*s(5,ii)+bmi.*s(6,ii),-(3*ami.*s(5,ii)+bmi.*s(6,ii)),0,0;
-(ahi.*s(2,ii)+bhi.*s(6,ii)),0,0,-(3*ami.*s(5,ii)+bmi.*s(6,ii)),ahi.*s(2,ii)+3*ami.*s(5,ii)+(2*ami+bmi+bhi).*s(6,ii)+2*bmi.*s(7,ii),-2*(ami.*s(6,ii)+bmi.*s(7,ii)),0;
0,-(ahi.*s(3,ii)+bhi.*s(7,ii)),0,0,-2*(ami.*s(6,ii)+bmi.*s(7,ii)),ahi.*s(3,ii)+2*ami.*s(6,ii)+(ami+2*bmi+bhi).*s(7,ii)+3*bmi.*s(8,ii),-(ami.*s(7,ii)+3*bmi.*s(8,ii));
0,0,-(ahi*s(4,ii)+bhi.*s(8,ii)),0,0,-(ami.*s(7,ii)+3*bmi.*s(8,ii)),ahi.*s(4,ii)+ami.*s(7,ii)+(3*bmi+bhi).*s(8,ii)]/NNa;
Rvec(:,ii)=sqrtm(dt*Dmtx)*randn(7,1);
end
s(2:8,:)=s(2:8,:)+dt*transition+Rvec;
s(1,:)=ones(1,nsim)-sum(s(2:8,:),1);
v=v-dt*Imemb/Cm;
end
clf %uncomment with small nsim
plot(dt:dt:Tstop,vrec)
realt=toc();
fprintf('time = %g\n',realt)