// Rubinstein model of Ranvier Node's action potentials as in // Rubinstein JT (1995) Biophys J 68: 779-785. // Mino H, Rubinstein JT, White JA (2002) Ann Biomed Eng 30: 578-587. // Bruce IC (2007) Ann Biomed Eng 35: 315-318; // Voltage is shifted so that resting voltage = 0 mV (the reversal of the leak) // This script simulates 1000 sweeps and calculates // firing efficiency, mean firing time and firing time variance // 100 (nsim) simultaneous sweeps, 10 times // Lines 49, 62, 63, 86 and 87 are intended to make a voltage trace // It is advisable to reduce nsim before uncommenting them // // UNcoupled (two-state) activation particles, 3 m and 1 h particle per Na channel // Difussion Approximation algorithm (F algorithm) nsim=100; gNa=0.02569*265; //mS/cm2 ENa=144; //mV Cm=0.0000714*265; Rm=1953.49/265; NNa=1000; Tstop=1; dt=0.001; //ms points = round(Tstop/dt) Idel=0; Idur=0.1; //ms, ms threshold=80; rand('normal'); Eff=[]; meanFT=[]; varFT=[]; tic() currents=[5:0.1:6.5]; NNa3=3*NNa; Eff=[]; meanFT=[]; varFT=[]; NaNs=[]; tic() for curr=1:size(currents,'*') Iamp=ones(1,nsim)*currents(curr); firetimes=[]; NNaNs=0; for nn=1:10 p=1; //If you want to uncomment the following reduce nsim //vrec = zeros(points,nsim); v = 0*ones(1,nsim); alpha_m=1.872*(v-25.41)./(1-exp((25.41-v)/6.06)); beta_m=3.973*(21-v)./(1-exp((v-21)/9.41)); alpha_h=-0.549*(27.74+v)./(1-exp((v+27.74)/9.06)); beta_h=(22.57)./(1+exp((56-v)/12.5)); m=ones(1,nsim)./(1+beta_m./alpha_m); h=ones(1,nsim)./(1+beta_h./alpha_h); firetime=zeros(1,nsim); firing=zeros(1,nsim); for t = dt:dt:Tstop //vrec(p,:) = v; //uncomment with a reduced nsim //p=p+1; if or(~firing&v>=threshold) then ind=find(v>=threshold&~firing); firetime(ind)=t; firing(ind)=1; end alpha_m=1.872*(v-25.41)./(1-exp((25.41-v)/6.06)); beta_m=3.973*(21-v)./(1-exp((v-21)/9.41)); alpha_h=-0.549*(27.74+v)./(1-exp((v+27.74)/9.06)); beta_h=(22.57)./(1+exp((56-v)/12.5)); SDm = sqrt(abs(alpha_m.*(1-m) + beta_m.*m)); SDh = sqrt(abs(alpha_h.*(1-h) + beta_h.*h)); Iapp=Iamp*(t>Idel&t<(Idel+Idur)); Imemb=-Iapp+gNa*m^(3).*h.*(v-ENa)+v./Rm; m=m+dt*(alpha_m.*(1-m)-beta_m.*m+rand(1,nsim).*SDm/sqrt(3*NNa*dt)); h=h+dt*(alpha_h.*(1-h)-beta_h.*h+rand(1,nsim).*SDh/sqrt(NNa*dt)); v=v-dt*Imemb/Cm; end printf("round %d Iamp %g\n",nn,currents(curr)) //clf //uncomment with a reduced nsim //plot(dt:dt:Tstop,vrec) firetimes=[firetimes firetime]; NNaNs=NNaNs + sum(1*(isinf(v)|isnan(v))); end Eff=[Eff;size(find(firetimes<>0),'*')]; meanFT=[meanFT;mean(firetimes(find(firetimes<>0)))]; if size(find(firetimes<>0),'*')>1 then varFT=[varFT;variance(firetimes(find(firetimes<>0)))]; else varFT=[varFT;0]; end NaNs=[NaNs;NNaNs]; end realt=toc(); printf("time = %g",realt) fprintfMat('EffN-Rb2 F-N'+string(NNa)+'-dt'+string(dt)+'-'+string(realt)+'s.txt',[currents' Eff meanFT varFT NaNs],'%g\t') scf(0); clf subplot(3,1,1) plot(currents,Eff) subplot(3,1,2) plot(currents,meanFT) subplot(3,1,3) plot(currents,varFT)