// Rubinstein model of Ranvier Node's action potentials as in // Rubinstein JT (1995) Biophys J 68: 779-785. // Mino H, Rubinstein JT, White JA (2002) Ann Biomed Eng 30: 578-587. // Bruce IC (2007) Ann Biomed Eng 35: 315-318; // Voltage is shifted so that resting voltage = 0 mV (the reversal of the leak) // This script simulates 1000 sweeps and calculates // firing efficiency, mean firing time and firing time variance // 100 (nsim) simultaneous sweeps, 10 times // Lines 49, 62, 63, 86 and 87 are intended to make a voltage trace // It is advisable to reduce nsim before uncommenting them // // UNcoupled (two-state) activation particles, 3 m and 1 h particle per Na channel // Goldwin et al. implementation (Phys Rev E 83:041908 (2011)) // Difussion Approximation algorithm with mean values of the variables in the random term nsim=100; gNa=0.02569; //mS/cm2 //gNa=0 ENa=144; //mV Cm=0.0000714; Rm=1953.49; NNa=1000; Tstop=1; dt=0.0002; //ms points = round(Tstop/dt) Idel=0; Idur=0.1; //�A, ms, ms threshold=80; rand('normal'); Eff=[]; meanFT=[]; varFT=[]; tic() currents=[5:0.1:6.5]; NNa3=3*NNa; Eff=[]; meanFT=[]; varFT=[]; NaNs=[]; tic() for curr=1:size(currents,'*') Iamp=ones(1,nsim)*currents(curr)/265; firetimes=[]; NNaNs=0; for nn=1:10 p=1; // vrec = zeros(points,nsim); v = 0*ones(1,nsim); am=1.872*(v-25.41)./(1-exp((25.41-v)/6.06)); bm=3.973*(21-v)./(1-exp((v-21)/9.41)); ah=-0.549*(27.74+v)./(1-exp((v+27.74)/9.06)); bh=(22.57)./(1+exp((56-v)/12.5)); M=am./bm; H=ah./bh; statesum=(1+H).*(1+M)^3; s=[ones(1,nsim);3*M;3*M.^2;M.^3;H;3*M.*H;3*M.^(2).*H;M^(3).*H]./(ones(8,1)*statesum); firetime=zeros(1,nsim); firing=zeros(1,nsim); //SDm=0; //SDh=0; for t = dt:dt:Tstop if or(~firing&v>=threshold) then ind=find(v>=threshold&~firing); firetime(ind)=t; firing(ind)=1; end am=1.872*(v-25.41)./(1-exp((25.41-v)/6.06)); bm=3.973*(21-v)./(1-exp((v-21)/9.41)); ah=-0.549*(27.74+v)./(1-exp((v+27.74)/9.06)); bh=(22.57)./(1+exp((56-v)/12.5)); Iapp=Iamp*(t>Idel&t<(Idel+Idur)); Imemb=-Iapp+gNa.*s(8,:).*(v-ENa)+v/Rm; transition=[3*am.*s(1,:)-(2*am+bm+ah).*s(2,:)+2*bm.*s(3,:)+bh.*s(6,:); 2*am.*s(2,:)-(2*bm+am+ah).*s(3,:)+3*bm.*s(4,:)+bh.*s(7,:); am.*s(3,:)-(3*bm+ah).*s(4,:)+bh.*s(8,:); -(3*am+bh).*s(5,:)+bm.*s(6,:)+ah.*s(1,:); 3*am.*s(5,:)-(2*am+bm+bh).*s(6,:)+2*bm.*s(7,:)+ah.*s(2,:); 2*am.*s(6,:)-(2*bm+am+bh).*s(7,:)+3*bm.*s(8,:)+ah.*s(3,:); am.*s(7,:)-(3*bm+bh).*s(8,:)+ah.*s(4,:)]; s_ss=[bm.^(3).*bh; 3*am.*bm.^(2).*bh; 3*am.^(2).*bm.*bh; am.^(3).*bh; bm.^(3).*ah; 3*am.*bm.^(2).*ah; 3*am.^(2).*bm.*ah; am.^(3).*ah]./(ones(8,1)*((ah+bh).*(am+bm).^3)); for ii = 1:nsim //because this algorithm needs a matrix operation (line 109) it has to be done iterating over independent simulations ami=am(ii);bmi=bm(ii);ahi=ah(ii);bhi=bh(ii); Dmtx=[3*ami.*s_ss(1,ii)+(2*ami+bmi+ahi).*s_ss(2,ii)+2*bmi.*s_ss(3,ii)+bhi.*s_ss(6,ii),-2*(ami.*s_ss(2,ii)+bmi.*s_ss(3,ii)),0,0,-(ahi.*s_ss(2,ii)+bhi.*s_ss(6,ii)),0,0; -2*(ami.*s_ss(2,ii)+bmi.*s_ss(3,ii)),2*ami.*s_ss(2,ii)+(ami+2*bmi+ahi).*s_ss(3,ii)+3*bmi.*s_ss(4,ii)+bhi.*s_ss(7,ii),-(ami.*s_ss(3,ii)+3*bmi.*s_ss(4,ii)),0,0,-(ahi.*s_ss(3,ii)+bhi.*s_ss(7,ii)),0; 0,-(ami.*s_ss(3,ii)+3*bmi.*s_ss(4,ii)),ami.*s_ss(3,ii)+(3*bmi+ahi).*s_ss(4,ii)+bhi.*s_ss(8,ii),0,0,0,-(ahi*s_ss(4,ii)+bhi.*s_ss(8,ii)); 0,0,0,ahi.*s_ss(1,ii)+(3*ami+bhi).*s_ss(5,ii)+bmi.*s_ss(6,ii),-(3*ami.*s_ss(5,ii)+bmi.*s_ss(6,ii)),0,0; -(ahi.*s_ss(2,ii)+bhi.*s_ss(6,ii)),0,0,-(3*ami.*s_ss(5,ii)+bmi.*s_ss(6,ii)),ahi.*s_ss(2,ii)+3*ami.*s_ss(5,ii)+(2*ami+bmi+bhi).*s_ss(6,ii)+2*bmi.*s_ss(7,ii),-2*(ami.*s_ss(6,ii)+bmi.*s_ss(7,ii)),0; 0,-(ahi.*s_ss(3,ii)+bhi.*s_ss(7,ii)),0,0,-2*(ami.*s_ss(6,ii)+bmi.*s_ss(7,ii)),ahi.*s_ss(3,ii)+2*ami.*s_ss(6,ii)+(ami+2*bmi+bhi).*s_ss(7,ii)+3*bmi.*s_ss(8,ii),-(ami.*s_ss(7,ii)+3*bmi.*s_ss(8,ii)); 0,0,-(ahi*s_ss(4,ii)+bhi.*s_ss(8,ii)),0,0,-(ami.*s_ss(7,ii)+3*bmi.*s_ss(8,ii)),ahi.*s_ss(4,ii)+ami.*s_ss(7,ii)+(3*bmi+bhi).*s_ss(8,ii)]/NNa; Rvec(:,ii)=sqrtm(dt*Dmtx)*rand(7,1); end s(2:8,:)=s(2:8,:)+dt*transition+Rvec; s(1,:)=ones(1,nsim)-sum(s(2:8,:),'r'); v=v-dt*Imemb/Cm; end printf("round %d Iamp %g\n",nn,currents(curr)) // clf // plot(dt:dt:Tstop,vrec) firetimes=[firetimes firetime]; NNaNs=NNaNs + sum(1*(isinf(v)|isnan(v))); end Eff=[Eff;size(find(firetimes<>0),'*')]; meanFT=[meanFT;mean(firetimes(find(firetimes<>0)))]; if size(find(firetimes<>0),'*')>1 then varFT=[varFT;variance(firetimes(find(firetimes<>0)))]; else varFT=[varFT;0]; end NaNs=[NaNs;NNaNs]; end realt=toc(); printf("time = %g",realt) write_csv([currents' Eff meanFT varFT NaNs],sprintf('EffN-Rb8DAGss-N%g-dt%g-%gs.csv',NNa,dt,realt),',',".") //scf(0); //clf //subplot(3,1,1) //plot(currents,Eff) //subplot(3,1,2) //plot(currents,meanFT) //subplot(3,1,3) //plot(currents,varFT)