#The stimulation protocol with two electrodes attached to 5th and 6th STN neurons #with a local (w1=0.3,w2=0) or non-local (w1=0.3,w2=0.1) spread of stimulation signals. #Used to generate Figures 6 and 8 in PLos One paper. #stimulation parameters par w1=0.3,w2=0,Kn=60,gsyn=1.4,iapp=8,fr=0.01,t0=1000,Cn=0.04 # stn parameters p vl=-60.,vna=55.,vk=-80.,thetam=30,sm=15 p gl=2.25,gna=50.,gk=40.,tn=1.,th=0.05 p gahp=9.,gca=.5,vca=140.,k1=15.,eps=5e-05 p kca=22.5,thetas=39.,ss=2.,xp=1.,i=0.,ssca=8. p thetah=-39.,sh=3.1,thetan=-32.,sn=-8. p taun0=1.,taun1=100.,thn=80.,sigman=26. p tauh0=1.,tauh1=500,thh=57.,sigmah=3.,phi=5. p thetat=-63.,kt=-7.8,gt=.5,phir=2. p thetar=-67.,kr=2.,taur0=7.1,taur1=17.5,thr=-68,sigmar=2.2 p alpha=5,beta=1.,ab=-30.,vsyn=-100. p rth=.25,rsig=-.07,i1=0.,rho1=.5,a1=.9 # gp parameters p gnag=120.,gkg=30.,gahpg=30.,gtg=.5,gcag=.1,glg=.1 p vnag=55.,vkg=-80.,vcag=120.,vlg=-55. p thetasg=-57.,ksg=2.,thetas1g=-35.,ks1g=2. p thetarg=-70.,krg=-2.,taurg=30. p thetamg=-37.,sigmamg=10. p thetang=-50.,sigmang=14. p taun0g=.05,taun1g=.27,thng=-40.,sng=-12. p thetahg=-58.,sigmahg=-12. p tauh0g=.05,tauh1g=.27,thhg=-40.,shg=-12. p k1g=30.,kcag=3.,epsg=0.0055 p phig=1.,deltang=.3,deltahg=.1 p gsyngg=.0,vsyngg=-80. p gsyng=0.4,vsyng=0,alphag=2.,betag=.14,abg=-20 p ka=.33 # stn functions sinf(v)=1./(1.+exp(-(v+thetas)/ss)) sinfca(v)=1./(1.+exp(-(v+thetas)/ssca)) minf(v)=1./(1.+exp(-(v+thetam)/sm)) hinf(v)=1./(1.+exp((v-thetah)/sh)) ninf(v)=1./(1.+exp((v-thetan)/sn)) taun(v)=taun0+taun1/(1+exp((v+thn)/sigman)) tauh(v)=tauh0+tauh1/(1+exp((v+thh)/sigmah)) rinf(v)=1/(1+exp((v-thetar)/kr)) taur(v)=taur0+taur1/(1+exp((v+thr)/sigmar)) tinf(v)=1/(1+exp((v-thetat)/kt)) rnew(r)=1/(1+exp((r-rth)/rsig))-1/(1+exp(-rth/rsig)) # gp functions sinfg(vg)=1/(1+exp(-(vg-thetasg)/ksg)) sinf1g(vg)=1/(1+exp(-(vg-thetas1g)/ks1g)) rinfg(vg)=1/(1+exp(-(vg-thetarg)/krg)) minfg(vg)=1./(1.+exp(-(vg-thetamg)/sigmamg)) ninfg(vg)=1./(1.+exp(-(vg-thetang)/sigmang)) taung(vg)=taun0g+taun1g/(1+exp(-(vg-thng)/sng)) hinfg(vg)=1./(1.+exp(-(vg-thetahg)/sigmahg)) tauhg(vg)=tauh0g+tauh1g/(1+exp(-(vg-thhg)/shg)) hv(v)=1./(1.+exp(-v/.001)) # stn currents il(v)=gl*(v-vl) ina(v,h)=gna*(minf(v))^3*h*(v-vna) ik(v,n)=gk*n^4*(v-vk) iahp(v,ca)=gahp*(v-vk)*ca/(ca+k1) ica(v)=gca*((sinfca(v))^2)*(v-vca) it(v,r)=gt*(tinf(v)**3)*(rnew(r)^2)*(v-vca) ################################################################### circular structure ################################################################### isyn1=gsyn*(sg10+sg1+sg2)*(v1-vsyn) isyn[2..9]=gsyn*(sg[j-1]+sg[j]+sg[j+1])*(v[j]-vsyn) isyn10=gsyn*(sg9+sg10+sg1)*(v10-vsyn) ################################################################### # gp currents itg(vg,rg)=gtg*(sinfg(vg)^3)*rg*(vg-vcag) inag(vg,hg)=gnag*(minfg(vg)^3)*hg*(vg-vnag) ikg(vg,ng)=gkg*(ng^4)*(vg-vkg) iahpg(vg,cag)=gahpg*(vg-vkg)*cag/(cag+k1g) icag(vg)=gcag*((sinf1g(vg))^2)*(vg-vcag) ilg(vg)=glg*(vg-vlg) ########################################### isyng[1..10]=gsyng*s[j]*(vg[j]-vsyng) ########################################### #stimulation current C1=Cn*Heav(t-t0) tau=0.5/fr tau0=0.5/fr Istim[1..2]=0. Istim3=w2*Istim5 Istim4=w1*Istim5+w2*Istim6 Istim5=2.*Kn*(1./(1.+exp(-(C1*(delay(x1,tau0+tau)-delay(x1,tau0)))/14.))-0.5)+w1*Istim6 Istim6=2.*Kn*(1./(1.+exp(-(C1*(delay(x2,tau0+tau)-delay(x2,tau0)))/14.))-0.5)+w1*Istim5 Istim7=w1*Istim6+w2*Istim5 Istim8=w2*Istim6 istim9=0. Istim10=0. aux Stim5=Istim5 aux Stim6=Istim6 # LFP of the neuronal population,assumes recording with electrode at 5th STN neuron Lfp5=0.1*(-isyn5+Istim5-w1*(isyn6+isyn4)-w2*(isyn7+isyn3)) Lfp6=0.1*(-isyn6+Istim6-w1*(isyn5+isyn7)-w2*(isyn4+isyn8)) aux Muf5=Lfp5 aux Muf6=Lfp6 # stn initial conditions i V1=-71.2,V2=-66.2,V3=-55.8,V4=-64.6,V5=-61.2,V6=-69.0,V7=-71.4,V8=-69.3,V9=-68.6,V10=-72.0 i H1=0.18,H2=0.35,H3=0.26,H4=0.28,H5=0.19,H6=0.31,H7=0.15,H8=0.23,H9=0.22,H10=0.34 i N1=0.33,N2=0.02,N3=0.1,N4=0.05,N5=0.26,N6=0.05,N7=0.44,N8=0.11,N9=0.11,N10=0.03 i R1=0.51,R2=0.57,R3=0.3,R4=0.63,R5=0.48,R6=0.54,R7=0.42,R8=0.62,R9=0.5,R10=0.61 i CA1=0.53,CA2=0.52,CA3=0.51,CA4=0.51,CA5=0.51,CA6=0.51,CA7=0.5,CA8=0.50,CA9=0.45,CA10=0.45 i S1=0.015,S2=0.,S3=0.,S4=0.,S5=0.003,S6=0.,S7=0.22,S8=0.,S9=0.,S10=0. # gp initial conditions i VG1=-66.42,VG2=-59.05,VG3=32.92,VG4=-59.91,VG5=-62.2,VG6=-59.7,VG7=-77.47,VG8=-61.83,VG9=-42.9,VG10=-74.73 i NG1=0.24,NG2=0.34,NG3=0.46,NG4=0.33,NG5=0.28,NG6=0.33,NG7=0.62,NG8=0.29,NG9=0.38,NG10=0.34 i HG1=0.55,HG2=0.52,HG3=0.51,HG4=0.55,HG5=0.58,HG6=0.52,HG7=0.29,HG8=0.59,HG9=0.54,HG10=0.42 i RG1=0.22,RG2=0.1,RG3=0.16,RG4=0.12,RG5=0.19,RG6=0.12,RG7=0.15,RG8=0.18,RG9=0.16,RG10=0.13 i CAG1=0.43,CAG2=0.28,CAG3=0.35,CAG4=0.31,CAG5=0.39,CAG6=0.31,CAG7=0.40,CAG8=0.39,CAG9=0.34,CAG10=0.33 i SG1=0.48,SG2=0.02,SG3=0.33,SG4=0.04,SG5=0.37,SG6=0.04,SG7=0.67,SG8=0.13,SG9=0.29,SG10=0.54 #delay initial conditions i x1=0.,x2=0. p Istn=10.,Igpe=0. aux Mf5=0.001*delay(x1,tau0) aux Mf6=0.001*delay(x2,tau0) om=2.*pi*fr # harmonic oscillators' equations x1'=y1 y1'=-1.*om*y1-(om^2)*x1+Lfp5 x2'=y2 y2'=-1.*om*y2-(om^2)*x2+Lfp6 # stn equations v[1..10]'=-(il(v[j])+ina(v[j],h[j])+ik(v[j],n[j])+iahp(v[j],ca[j])+ica(v[j])+it(v[j],r[j]))-isyn[j]+Istn+Istim[j] r[1..10]'=phir*(rinf(v[j])-r[j])/taur(v[j]) h[1..10]'=phi*( hinf(v[j])-h[j] )/tauh(v[j]) n[1..10]'=phi*( ninf(v[j])-n[j] )/taun(v[j]) ca[1..10]'=phi*eps*(-ica(v[j])-it(v[j],r[j]) - kca*ca[j]) s[1..10]'=alpha*(1-s[j])*sinf(v[j]+ab)-beta*s[j] # gp equations vg[1..10]'= -(itg(vg[j],rg[j])+inag(vg[j],hg[j])+ikg(vg[j],ng[j])+iahpg(vg[j],cag[j])+icag(vg[j])+ilg(vg[j]))+iapp-isyng[j]+Igpe ng[1..10]'= deltang*(ninfg(vg[j])-ng[j])/taung(vg[j]) hg[1..10]'= deltahg*(hinfg(vg[j])-hg[j])/tauhg(vg[j]) rg[1..10]'= phig*(rinfg(vg[j])-rg[j])/taurg cag[1..10]'=epsg*(-icag(vg[j])-itg(vg[j],rg[j]) - kcag*cag[j]) sg[1..10]'=alphag*(1-sg[j])*sinfg(vg[j]+abg)-betag*sg[j] @ dt=.05,total=6999,meth=qualrk,xp=t,yp=v1,xlo=0,xhi=7000,ylo=-80,yhi=20.,bound=500001,maxstor=500001,delay=100. done