// func isclass( objref, class name ) - checks if object is of a given type
// dependency: none (stdlib and stdrun always assumed to be loaded and not listed in dependency)
// proc MechList( List ) - adds String with the name of all membrane mechanisms in cas to List
// dependency: none
// proc getglist( List ) - get the names of all membrane mechanisms in cas with a 'g' variable
// dependency: MechList (local)
// func Rm( channel name(s), Rm/Gm flag ) - returns membrane resistance or conductance
// dependency: MakeStringList (local), getglist (local)
// func meanRm( sections, mechanism(s), Rm/Gm flag)
// dependency: Rm (local), MakeStringList (local), getglist (local)
// proc HCNDist( strdef gradient name ) - set the gradient of HCN distributions
// dependency: issplit, StopPar, StartPar (parinit); meanRm (local)
load_file("chanAnalysis.hoc")
proc handle_M_dist() { local D, Mhalf, MS, Mmax, Mmin, ms
Mmax = SIZM
Mmin = 2.5e-4
Mhalf = 180
MS = -70
ms = issplit()
if (ms) stopPar()
soma[0] {distance()}
forsec "Handle" {
D = distance(0.5)
gmax_M = (Mmin + (Mmax-Mmin)/(1+exp((Mhalf-D)/MS)))
}
if (ms) startPar()
}
proc handle_Na_dist() { local D, d_half, Namax, S, Namin, ms
Namin = 1.0e-2
Namax = SIZNa
d_half = 120
S = -120
ms = issplit()
if (ms) stopPar()
soma[0] {distance()}
forsec "Handle" {
D = distance(0.5)
gmax_Na = (Namin + (Namax-Namin)/(1+exp((d_half-D)/S)))
}
if (ms) startPar()
}
proc add4AP() {localobj ml
//MechList( ml )
forall {
if (ismembrane("KD")) gmax_KD = gmax_KD*(1-e4AP)
}
}
proc wash4AP() {
forall {
if (ismembrane("KD")) gmax_KD = gmax_KD/(1-e4AP)
}
}
proc addZD7288() {
forall {
if (ismembrane("h")) gmax_h = gmax_h*(1-eZD)
}
}
proc washZD7288() {
forall {
if (ismembrane("h")) gmax_h = gmax_h/(1-eZD)
}
}
proc addXE991() {
forall if (ismembrane("M")) gmax_M = gmax_M*(1-eXE)
if (numarg()>0) if (strcmp($s1,"axon")==0) {
forsec "Axon" gmax_M = gmax_M*2
}
}
proc washXE991() {
forall if (ismembrane("M")) gmax_M = gmax_M/(1-eXE)
if (numarg()>0) if (strcmp($s1,"axon")==0) {
forsec "Axon" gmax_M = gmax_M/2
}
}
proc makenonspiking() {
forall {
if (ismembrane("Na")) uninsert Na
if (ismembrane("HH_Kdr")) uninsert HH_Kdr
if (ismembrane("KCa")) uninsert KCa
if (ismembrane("CaIn")) uninsert CaIn
e_pas=e_pas+3
}
}
proc MechList() { local i, cas localobj ml, mt
//MechList( string list, cas flag )
// creates a list of strings with the names of all membrane mechanisms in cas or all sections
if (object_id($o1,1) == -1) $o1 = new List() // if object is null make a new List
ml = $o1
mt = new MechanismType(0)
if (numarg()>1) cas = $2 else cas = 0
for i=0,mt.count()-1 {
mt.select(i)
mt.selected(strtmp)
if (cas) {
if (MechChk(strtmp) == 1) ml.append(new String(strtmp))
} else ml.append(new String(strtmp))
}
}
proc PPList() { local i localobj ml, mt
//PPList( string list, type )
// creates a list of strings with the names of point processes in cas
if (object_id($o1,1) == -1) $o1 = new List() // if object is null make a new List
ml = $o1
mt = new MechanismType(1)
// if (numarg()>1) cas = $2 else cas = 0
for i=0,mt.count()-1 {
mt.select(i)
mt.selected(strtmp)
if (MechChk(strtmp) == 1) ml.append(new String(strtmp))
}
}
func MechChk() { local i,val localobj ms
//bool = MechChk( string )
// checks whether membrane mechanism named "string" is in current section. Returns 1 if yes, 0 if not
ms = new MechanismStandard($s1,0)
val = -1.3e20 // assuming no parameter will be equal to this value
if (ms.count() > 0) {
ms.name(tmpstr,0)
ms.set(tmpstr,val)
ms.in()
i = (val != ms.get(tmpstr))
}
return i
}
proc getglist() { local i,j,flag, cas localobj glist, ms, SF
// getglist( List, cas flag )
// generate a list of conductance mechanisms in cas or all sections (all membrane mechs with a 'g' value)
if (numarg()>1) cas = $2 else cas = 0
if (object_id($o1,1) == -1) $o1 = new List() // if object is null make a new List
glist = $o1
MechList(glist, cas)
SF = new StringFunctions()
for (i=glist.count()-1; i>=0; i=i-1) {
ms = new MechanismStandard(glist.o(i).s, 0)
flag=0
for j=0,ms.count()-1 {
ms.name(strtmp,j)
if (SF.substr(strtmp,"g_") != -1) {
flag=1
}
}
if (flag == 0) glist.remove(i)
}
}
proc gvecSetup() {local gi localobj objtmp, gvec
CleanStepEvent()
if (numarg()>1) gi=$2 else gi=0
idc_G_[1] = new IClamp()
Tines[1] idc_G_[1].loc(0.5)
idc_G_[1].amp=0
if (numarg() > 0) {
if (argtype(1)==1) gvec = $o1 else gvec = gvec_G_
} else gvec = gvec_G_
if (SectionListCount(HList)>0) {
if (strcmp(Hname,"hcn") == 0) {
Hchan = new hcnAnalysis()
} else if (strcmp(Hname,"h") == 0) {
Hchan = new hAnalysis()
}
objtmp = new Vector()
if (gi==0) {
objtmp.record(idc_G_[1], &Hchan.nh, RecDt)
objtmp.label("nh")
} else if (gi==1) {
objtmp.record(idc_G_[1], &Hchan.ih, RecDt)
objtmp.label("Ih")
}
gvec.append(objtmp)
}
if (SectionListCount(KDList)>0) {
if (strcmp(KDname,"KD") == 0) {
KDchan = new KDAnalysis()
} else if (strcmp(KDname,"KD_ca3") == 0) {
KDchan = new KD3Analysis()
}
objtmp = new Vector()
if (gi==0) {
objtmp.record(idc_G_[1], &KDchan.nKD, RecDt)
objtmp.label("nKD")
gvec.append(objtmp)
objtmp = new Vector()
objtmp.record(idc_G_[1], &KDchan.lKD, RecDt)
objtmp.label("lKD")
} else if (gi==1) {
objtmp.record(idc_G_[1], &KDchan.iKD, RecDt)
objtmp.label("IKD")
}
gvec.append(objtmp)
}
if (SectionListCount(KAList)>0) {
KAchan = new KAAnalysis()
objtmp = new Vector()
if (gi==0) {
objtmp.record(idc_G_[1], &KAchan.nKA, RecDt)
objtmp.label("nKA")
gvec.append(objtmp)
objtmp = new Vector()
objtmp.record(idc_G_[1], &KAchan.lKA, RecDt)
objtmp.label("lKA")
} else if (gi==1) {
objtmp.record(idc_G_[1], &KAchan.iKA, RecDt)
objtmp.label("IKA")
}
gvec.append(objtmp)
}
if (SectionListCount(CaTList)>0) {
CaTchan = new CaTAnalysis()
objtmp = new Vector()
if (gi==0) {
objtmp.record(idc_G_[1], &CaTchan.sCaT, RecDt)
objtmp.label("sCaT")
gvec.append(objtmp)
objtmp = new Vector()
objtmp.record(idc_G_[1], &CaTchan.hCaT, RecDt)
objtmp.label("hCaT")
} else if (gi==1) {
objtmp.record(idc_G_[1], &CaTchan.iCaT, RecDt)
objtmp.label("ICaT")
}
gvec.append(objtmp)
}
}
proc getgvec() { local i,j localobj gvec, ml, ms, SF
// getgvec( Vector, List )
// getgvec( Vector )
// generate vector of conductance values of all mechanisms in List. If no List given, calls
// MechList and uses all conductance mechanisms
gvec = $o1
if (numarg()>1) {
ml = $o2
} else {
ml = new List()
MechList(ml)
}
if (object_id(gvec,1) == -1) gvec=new Vector(ml.count(),0)
SF = new StringFunctions()
for i=0,ml.count()-1 {
ms = new MechanismStandard(ml.o(i).s, 0)
for j=0,ms.count()-1 {
ms.name(strtmp,j)
if (SF.substr(strtmp,"g_") != -1) {
gvec.x[i]=1
}
}
}
}
func Rm() { local i,flag localobj gls
// val = Rm( strdef channel name )
// val = Rm( List channel name(s) )
// val = Rm( channel name(s), Rm/Gm flag )
// val = Rm( "", Rm/Gm flag )
// measure membrane resistivity megaohm*cm^2 (flag == 0) or conductivity S/cm^2 (flag == 1)
flag = 0
RmGtot=0
if (numarg() > 0) {
if (argtype(1) == 1) {
gls = $o1
} else if (argtype(1)==2) {
gls = new List()
MakeStringList(gls,$s1)
} else if (argtype(1)==0) {
gls = new List()
getglist(gls)
}
} else {
gls = new List()
getglist(gls)
}
if (numarg() > 1) flag = $2
for i=0,gls.count()-1 {
if (ismembrane(gls.o(i).s)) {
sprint( strtmp, "RmGtot += g_%s", gls.o(i).s)
//if (verbosity > 3) printf("%s", strtmp)
execute(strtmp)
}
}
if (flag ==1) {
return RmGtot
} else {
if (RmGtot == 0) return 1e30 else return 1e-3/RmGtot
}
}
func sum_state() { local err
// sum = sum_state( strdef, SectionList )
Ssum=0
err=-1
sprint( strtmp, "Ssum += %s*area(0.5)", $s2)
forsec $o1 {
if (err==-1) {
err = execute1(strtmp)
if (err==0) return -1
} else execute(strtmp)
}
return Ssum
}
func meanRm() { local argn,i,flag, Asum,Gsum localobj gls, sl
// val = meanRm( sections, mechanism(s), Rm/Gm flag)
// 'sections' can be a SectionList or string specifying sections to measure
// 'mechanisms' can be a List of membrane mechanisms, a string with name of mechanism, or
// else a list of all membrane mechanisms is generated
// if Rm/Gm flag == 1 returms mean membrane conductivity (S/cm^2).
// measure membrane resistivity megaohm*cm^2 (flag == 0) or conductivity S/cm^2 (flag == 1)
flag = 0
Gsum=0
Asum = 0
argn = numarg()
if (verbosity > 3) for i=1,argn print argtype(i)
if (argn >= 1) {
if (argtype(1)==2) {
sl = new SectionList()
forall ifsec $s1 sl.append()
if (verbosity > 4) sl.printnames()
} else if (argtype(1)==1) sl = $o1
} else {
if (verbosity > 1) printf("Must give at least 1 input arg: meanRm\n")
return -1
}
if (argn >= 2) {
if (argtype(2)==1) {
gls = $o2
} else if (argtype(2)==2) {
gls = new List()
MakeStringList(gls,$s2)
} else if (argtype(2)==0) {
gls = new List()
getglist(gls)
}
} else {
gls = new List()
getglist(gls)
}
if ((argn >= 3) && (argtype(3)==0) ) flag = $3
if ( SectionListCount(sl) == 0 ) return -1
if (object_id(sl) != 0) {
forsec sl for (x,0) {
Asum += area(x) // µm2
Gsum += Rm(gls,1)*area(x) // S/cm2*µm2 = S*10^-8
}
} else {
forall for (x,0) {
Asum += area(x) // µm2
Gsum += Rm(gls,1)*area(x) // S/cm2*µm2 = S*10^-8
}
}
if (flag ==1) {
return Gsum/Asum // S/cm2
} else {
if (Gsum == 0) return 1e30 else return Asum*1e-3/Gsum // MΩ•cm2
}
}
obfunc getchan() { local i,flag localobj glist, ms, SF
// mech = getchan( strdef )
// generate a list of conductance mechanisms in section (all membrane mechs with a 'g' value)
glist = new List() // if object is null make a new List
MechList(glist)
SF = new StringFunctions()
for (i=glist.count()-1; i>=0; i=i-1) {
if (SF.substr( glist.o(i).s, $s1) != -1) {
ms = new MechanismStandard( glist.o(i).s, 0)
flag=1
}
}
return ms
}
//
// proc HCNDist() { local Gm, iss, scale, md, grest
// //HCNDist( gradient name )
//
// iss = issplit()
// if (iss) stopPar()
//
// if (verbosity > 2) printf( "HCNDist: dist = %s\n", $s1 )
//
// finitialize(v_init)
// Gm = meanRm( FieldA, "hcn", 1)
//
// grest = Tines[0].g_hcn/Tines[0].gmax_hcn // %gmax at rest. grest = n_ncn at -65 mV
//
// //weighted mean of gmax = Gm/grest
//
// if ( strcmp("flat", $s1) == 0 ) {
// forsec FieldA gmax_hcn = Gm/grest
// } else if ( strcmp("increase", $s1) == 0 ) {
// Handle[60] distance()
// forsec FieldA gmax_hcn = 1e-6*distance(0.5)
// init()
// scale = Gm/meanRm(FieldA,"hcn",1)
// forsec FieldA gmax_hcn = gmax_hcn*scale
// } else if ( strcmp("decrease", $s1) == 0 ) {
// Handle[60] distance()
// forsec FieldA if (distance(0.5) > md) md = distance(0.5)
// forsec FieldA gmax_hcn = 1e-6*( md - distance(0.5) )
// init()
// scale = Gm/meanRm(FieldA,"hcn",1)
// forsec FieldA gmax_hcn = gmax_hcn*scale
// }
//
// forsec FieldA gmax_KD_ca3 = 4e-3 + gmax_hcn*140
// if (iss) startPar()
// }
func meanCaI() { local argn,i, A,ci localobj sl
//meanCaI( sections )
ci= 0
A = 0
argn = numarg()
if (verbosity > 3) for i=1,argn print argtype(i)
if (argn >= 1) {
if (argtype(1)==2) {
sl = new SectionList()
forall ifsec $s1 sl.append()
if (verbosity > 2) sl.printnames()
} else if (argtype(1)==1) sl = $o1
}
if (object_id(sl) != 0) {
forsec sl for (x,0) {
A += area(x)
ci += cai*area(x)
}
} else {
forall for (x,0) {
A += area(x)
ci += cai*area(x)
}
}
return ci/A
}
/*func gmrin() {
forall g_pas=1e-1
zz.compute(0)
MainTrunk[0] print zz.input(0.5)
}*/
func ri2() {local val,i localobj sref
// val = ri2( void )
// measures the sum axial resistance (MΩ) between cas and its adjacent section
val=0
sref = new SectionRef()
if (sref.has_parent()) val=ri(0.5)
for i= 0,sref.nchild-1 {
sref.child[i] val+=ri(0.5)
}
}
func lambda() { local val, rm
if (numarg() > 0) rm = $1 else rm = Rm()
val = 0.5*(diam*rm/Ra)^0.5
return val
}
proc swapchans() {local g
// swapchans( channel name1, channel name2 )
// swap chans replaces one conductance with another maintaining gmax in each section
forall {
strtmp = $s1
if (ismembrane(strtmp)) {
sprint(tmpstr, "g = gmax_%s", strtmp)
execute(tmpstr)
sprint(tmpstr, "uninsert %s", strtmp)
execute(tmpstr)
strtmp = $s2
sprint(tmpstr, "insert %s", strtmp)
execute(tmpstr)
sprint(tmpstr, "gmax_%s = g", strtmp)
execute(tmpstr)
}
}
}
// proc ZratioRa() { local zf,rmax,strobj,up localobj zz, sl, sref
// // ZratioRa(section list, init section, peak Ra, frequency, increase/decrease)
//
// zf=10
// rmax=300
// up=0
//
// finitialize(v_init)
//
// if (argtype(1)==2) {
// sl = new SectionList()
// forall ifsec $s1 sl.append()
// if (verbosity > 2) sl.printnames()
// } else if (argtype(1)==1) sl = $o1
//
// if (numarg()>1) {
// if (argtype(2)==2) {
// sprint(tmpstr, "%s sref = new SectionRef()", $s2)
// if (verbosity > 2) printf("%s\n", tmpstr)
// execute(tmpstr)
// }
// if (argtype(2)==1) sref = $o2
// } else soma[0] sref = new SectionRef()
// if (numarg()>2) rmax = $3
// if (numarg()>3) zf = $4
// if (numarg()>4) up = $5
//
// //if (msplit) stopPar()
//
// zz = new Impedance()
// sref.sec { zz.loc(0.5) }
// zz.compute(zf)
// forsec sl {
// if (up==0) Ra=rmax*zz.ratio(0.5)
// if (up>0) Ra=rmax/zz.ratio(0.5)
// }
//
// //if (msplit) load_file(1,"initpar.hoc")
//
// }
//
// obfunc Zmap() {local zf,pwr,in,i localobj zz, chan, sl, map, sref
// // Zmap(section list, init section, frequency, pwr, in/out)
//
// zf=0
// pwr=1
// in=0
// i=0
//
// finitialize(v_init)
//
// if (argtype(1)==2) {
// sl = new SectionList()
// forall ifsec $s1 sl.append()
// if (verbosity > 2) sl.printnames()
// } else if (argtype(1)==1) sl = $o1
//
// if (numarg()>1) {
// if (argtype(2)==2) {
// sprint(tmpstr, "%s sref = new SectionRef()", $s2)
// if (verbosity > 2) printf("%s\n", tmpstr)
// execute(tmpstr)
// }
// if (argtype(2)==1) sref = $o2
// } else soma[0] sref = new SectionRef()
// if (numarg()>2) zf = $3
// if (numarg()>3) pwr = $4
// if (numarg()>4) in = $5
//
// forsec sl i+=1
// map = new Vector(i)
// zz = new Impedance()
// if (verbosity > 3) printf("%g\n", map.size())
//
// if (in == 1) {
// sref.sec { zz.loc(0.5) }
// zz.compute(zf)
// i=0
// forsec sl {
// map.x[i]=zz.ratio(0.5)^pwr
// i+=1
// }
// } else {
// i=0
// forsec sl {
// zz.loc(0.5)
// zz.compute(zf)
// sref.sec map.x[i]=zz.ratio(0.5)^pwr
// i+=1
// }
// }
//
// return map
//
// }
//
// proc ZDirect_g() { local argn,zf,grel,reps,pwr,g,zo,i,max,glim localobj z1, z2, chan, sl
// // ZDirect_g( section list, ref section, chan, grel, frequency, reps,pwr,glim,max change)
//
// zf=0
// grel=1e-5
// reps=0
// pwr=1
// max=1e2
// glim=1
//
// finitialize(v_init)
//
// argn=numarg()
// chan = new String()
// if (argtype(1)==2) {
// sl = new SectionList()
// forall ifsec $s1 sl.append()
// if (verbosity > 2) sl.printnames()
// } else if (argtype(1)==1) sl = $o1
//
// if (argn>1) {
// if (argtype(2)==2) {
// sprint(tmpstr, "%s sref = new SectionRef()", $s2)
// if (verbosity > 2) printf("%s\n", tmpstr)
// execute(tmpstr)
// }
// if (argtype(2)==1) sref = $o2
// } else soma[0] sref = new SectionRef()
// if (argn>2) {
// if (argtype(3)==2) chan.s = $s3
// if (argtype(3)==1) chan = $o3
// }
// if (argn>3) grel =$4
// if (argn>4) zf = $5
// if (argn>5) reps =$6
// if (argn>6) pwr = $7
// if (argn>7) glim =$8
// if (argn>8) max = $9
//
// for i=0,reps {
// z1 = new Impedance()
// z2 = new Impedance()
// sref.sec { z1.loc(0.5) }
// z1.compute(zf)
// forsec sl {
// if (ismembrane(chan.s)) {
// z2.loc(0.5)
// z2.compute(zf)
//
// sref.sec zo = z2.ratio(0.5)
// if (grel == 0) {
// sprint(tmpstr, "val = gmax_%s", chan.s)
// execute(tmpstr)
// g = val+max*val*(zo-z1.ratio(0.5)^pwr)
// } else g = grel+max*grel*(zo-z1.ratio(0.5)^pwr)
// if (verbosity > 3) printf("%g", g)
// if (g<1e-9) g=0
// if (g>glim) g=glim
// sprint(tmpstr, "gmax_%s = %g", chan.s, g)
// execute(tmpstr)
// }
// }
// }
// }
//
proc Zratio_g() { local zf,grel,up,pwr,max,g localobj zz, chan, sl
// Zratio_g( section list, init section, chan, grel, frequency, increase/decrease, pwr, max )
//
// sets conductance within sections based on the ratio of impedance between that section
// and a reference location
zf=100
grel=1e-5
up=1
pwr=1
max=1
finitialize(v_init)
chan = new String()
if (argtype(1)==2) {
sl = new SectionList()
forall ifsec $s1 sl.append()
if (verbosity > 3) sl.printnames()
} else if (argtype(1)==1) sl = $o1
if (numarg()>1) {
if (argtype(2)==2) {
sprint(tmpstr, "%s sref = new SectionRef()", $s2)
if (verbosity > 2) printf("%s\n", tmpstr)
execute(tmpstr)
}
if (argtype(2)==1) sref = $o2
} else soma[0] sref = new SectionRef()
if (numarg()>2) {
if (argtype(3)==2) chan.s = $s3
if (argtype(3)==1) chan = $o3
if (verbosity > 2) printf("%s\n", chan.s)
}
if (numarg()>3) grel = $4
if (numarg()>4) zf = $5
if (numarg()>5) up = $6
if (numarg()>6) pwr = $7
if (numarg()>7) max = $8
//if (msplit) stopPar()
if (verbosity > 2) printf("grel = %g\tzf = %g\tup = %g\tpwr = %g\tmax = %g\n", grel,zf,up,pwr,max)
zz = new Impedance()
sref.sec { zz.loc(0.5) }
zz.compute(zf)
forsec sl {
if (ismembrane(chan.s)) {
if (grel == 0) {
if (strcmp(chan.s, "pas") ==0) { sprint(tmpstr, "val = g_%s", chan.s)
} else sprint(tmpstr, "val = gmax_%s", chan.s)
execute(tmpstr)
} else val = grel
if (up==0) {
g = val*zz.ratio(0.5)^pwr
if (g>max) g=max
if (strcmp(chan.s, "pas") ==0) { sprint(tmpstr, "g_pas = %g", g)
} else sprint(tmpstr, "gmax_%s = %g", chan.s, g)
}
if (up>0) {
g = val/zz.ratio(0.5)^pwr
if (g>max) g=max
if (strcmp(chan.s, "pas") ==0) { sprint(tmpstr, "g_pas = %g", g)
} else sprint(tmpstr, "gmax_%s = %g", chan.s, g)
}
execute(tmpstr)
}
}
}
//
// proc ImpedanceMeasure() { local n,i,j,nsect,nVm,atmp,rtmp,ztmp,zf localobj savdata,sections,Atot,Zin,rax,Vms,zz
// //ImpedanceMeasure(filename,sections,Vm vector,frequency)
// // calculates the surface area weighted average input impedance for specified sections at different Vm and freq
// // siz, handle, maintrunk, tines, field B, Ctines, Chandle, axon, cell
//
// n = numarg()
// filename = $s1
// sections = $o2
// Vms = $o3
// zf=0
// if (n>3) zf = $4
//
// nVm = Vms.size()
// nsect = sections.size()
//
// Atot = new Vector(nsect+1)
// rax = new Vector(nsect+1)
//
// atmp=0
// ztmp=0
//
// savdata = new File()
// savdata.wopen(filename)
//
// savdata.printf( "Measured impedance at %d membrane potentials for %d sections\n", nVm, nsect)
// savdata.printf( "Sections:\t")
//
// stopPar()
//
// for i=0,nVm-1 {
//
// Zin = new Vector(nsect+1)
//
// finitialize(Vms.x[i])
//
// zz = new Impedance()
// zz.loc(0.5)
// zz.compute(zf)
//
// for j=0,nsect-1 {
//
// rtmp=0
// if ( isclass(sections.o(j), "SectionList") ) {
// if (i==0) savdata.printf( "%s\t", sections.o(j) )
// forsec sections.o(j) {
// sa=area(0.5)
// if (i==0) {
// atmp += sa
// rtmp += sa*Ra
// }
// ztmp += sa*zz.input(0.5)
// }
// } else if ( isclass(sections.o(j), "String") ) {
// if (i==0) savdata.printf( "%s\t", sections.o(j).s )
// forsec sections.o(j).s {
// sa=area(0.5)
// if (i==0) {
// atmp += sa
// rtmp += sa*Ra
// }
// ztmp += sa*zz.input(0.5)
// }
// }
// if (i==0) {
// Atot.x[j]=atmp
// rax.x[j]=rtmp/atmp
// }
// Zin.x[j]=ztmp/atmp
// }
//
// j=nsect
// atmp = totalarea()
// ztmp=0
// rtmp=0
// forall {
// ztmp += area(0.5)*zz.input(0.5)
// rtmp += area(0.5)*Ra
// }
//
// if (i==0) {
// Atot.x[j]=atmp
// rax.x[j]=rtmp/atmp
// }
// Zin.x[j]=ztmp/atmp
//
// if (i==0) {
// savdata.printf( "all\n" )
// savdata.printf( "Area (cm^2):\t")
// Atot.printf(savdata,"%g\t")
// savdata.printf( "\n" )
// savdata.printf( "Ra (Ωcm):\t")
// rax.printf(savdata, "%g\t")
// savdata.printf( "\n" )
// }
// savdata.printf( "\nVm = %g\n", Vms.x[i])
// savdata.printf( "Z(%g) (MΩ):\t", zf)
// Zin.printf(savdata, "%g\t")
// savdata.printf( "\n" )
// //rvec.vwrite(savdata,4)
// }
// savdata.close()
//
// //chdir(cwd)
// }
//
// func meanVatt() { local n,Vm,lz,ztmp,zf,ms,dir localobj sl,zz, sref
// //val = meanVatt(section list, Vm, frequency, direction)
// //MainTrunk[0] val = meanVatt(FieldA, -65, 0, 0)
//
// n = numarg()
//
// if (n >= 1) {
// if (argtype(1)==2) {
// sl = new SectionList()
// forall ifsec $s1 sl.append()
// if (verbosity > 4) sl.printnames()
// } else if (argtype(1)==1) sl = $o1
// } else {
// if (verbosity > 1) printf("Must give at least 1 input arg: meanVatt\n")
// return -1
// }
//
// if (n>1) Vm = $2 else Vm=v_init
// if (n>2) zf = $3 else zf=0
// if (n>3) dir = $4 else dir=0
//
// ztmp=0
//
// ms = issplit()
// if (ms) stopPar()
//
// finitialize(Vm)
//
// sa = sectionarea(sl)
//
// zz = new Impedance()
// if (dir==1) {
// zz.loc(0.5)
// zz.compute(zf)
//
// forsec sl {
// ztmp += area(0.5)*zz.ratio(0.5)
// }
// } else if (dir==0) {
//
// sref = new SectionRef()
//
// forsec sl {
// zz.loc(0.5)
// zz.compute(zf)
//
// sref.sec { lz = zz.ratio(0.5) }
// ztmp += area(0.5)*lz
// }
// }
//
// mva = ztmp/sa
//
// if (ms) startPar()
//
// return mva
// }