from brian import *
import sys, subprocess, os
import numpy as np
import matplotlib
from matplotlib import lines
import pylab as pl
# Key simulation parameters.
wee_n = 35. # exc-exc coupling strength (nS)
gki_list = [15.] # inhibitory neuron's potassium conductance
ext_max = 8. # maximum external input to exc neurons (kHz)
# Run simulations with different g(K)_inh values.
for gki in gki_list:
defaultclock.dt=0.02*ms
# Number of neurons
N = 3000
Ne = int(N)
Ni = int(N*0.25)
p = 0.01
# simulation time
sim_time = 2200 *ms
# Synaptic reversal potential
ve = 55 *mV
vi = -90 *mV
# synaptic time constant
taue = 3 *msecond
taui = 10 *msecond
tauext = 3 *msecond
# synaptic coupling strength
wee=wee_n *nsiemens*(cmeter**-2)
wie=40 *nsiemens*(cmeter**-2)
wei=70.*nsiemens*(cmeter**-2)
wii=5.*nsiemens*(cmeter**-2)
wext=20.*nsiemens*(cmeter**-2)
# External inputs to exc and inh neurons.
# Given a time vector tvec = [t0, t1, ..., tn] and a rate vector rvec = [r0, r1, ..., rn],
# the function stim(t) generates a piecewise linear function that connects (t0,r0), (t1,r1), ..., (tn,rn).
tvec = [ 0.*ms, 200.*ms, 1200.*ms, sim_time]
rvec = [0.*Hz, 0.*Hz, ext_max *kHz, 0.*Hz]
def heavi(x):
if x > 0:
return 1
elif x <=0:
return 0
def stim(t):
r = 0.*Hz
for j in range(len(tvec)-1):
r = r + (rvec[j] + (rvec[j+1]-rvec[j])/(tvec[j+1]-tvec[j])*(t-tvec[j]))*(heavi(t-tvec[j]) - heavi(t-tvec[j+1]))
return r
exte = lambda t: stim(t)
exti = 50 *Hz
# HH neuron parameters #
E_na = 50 *mV
E_ke = -70 *mV
E_ki = -70 *mV
E_cl = -82 *mV
E_ca = 120 *mV
C = 1. *nfarad*(cmeter**-2)
g_na = 100. *usiemens * (cmeter**-2)
g_ke = 40. *usiemens * (cmeter**-2)
g_ki = gki *usiemens * (cmeter**-2)
g_kl = 0.05 *usiemens * (cmeter**-2)
g_nal = 0.0175 *usiemens * (cmeter**-2)
g_cl = 0.05 *usiemens * (cmeter**-2)
phi = 3
# neuron models
# excitatory HH neurons
eqe = Equations('''
dv/dt = ( -Ina - Ik - Icl - ge*(v-ve) - gi*(v-vi) - gext*(v-ve))/C :volt
dn/dt = phi*(alpha_n*(1-n) - beta_n*n) :1
dh/dt = phi*(alpha_h*(1-h) - beta_h*h) :1
Ina = g_na*(minf**3*h)*(v-E_na) + g_nal*(v-E_na) :amp/meter**2
Ik = g_ke*(n**4)*(v - E_ke) + g_kl*(v - E_ke) :amp/meter**2
Icl = g_cl*(v - E_cl) :amp/meter**2
minf = alpha_m/(alpha_m + beta_m) :1
alpha_m = 0.1*(mV**-1)*(v + 30.*mV)/(1 - exp(-0.1*(mV**-1)*(v+30.*mV)))/ms :Hz
beta_m = 4.*exp(-(v+55.*mV)/(18.*mV))/ms :Hz
alpha_n = 0.01*(mV**-1)*(v+34.*mV)/(1-exp(-0.1*(mV**-1)*(v+34.*mV)))/ms :Hz
beta_n = 0.125*exp(-(v+44.*mV)/(80.*mV))/ms :Hz
alpha_h = 0.07*exp(-(v+44.*mV)/(20.*mV))/ms :Hz
beta_h = 1/(1 + exp(-0.1*(mV**-1)*(v+14.*mV)))/ms :Hz
dge/dt = -ge/taue : siemens/meter**2
dgi/dt = -gi/taui : siemens/meter**2
dgext/dt = -gext/tauext : siemens/meter**2
''')
# inhibitory HH neurons
eqi = Equations('''
dv/dt = ( -Ina - Ik - Icl - ge*(v-ve) - gi*(v-vi) - gext*(v-ve))/C :volt
dn/dt = phi*(alpha_n*(1-n) - beta_n*n) :1
dh/dt = phi*(alpha_h*(1-h) - beta_h*h) :1
Ina = g_na*(minf**3*h)*(v-E_na) + g_nal*(v-E_na) :amp/meter**2
Ik = g_ki*(n**4)*(v - E_ki) + g_kl*(v - E_ki) :amp/meter**2
Icl = g_cl*(v - E_cl) :amp/meter**2
minf = alpha_m/(alpha_m + beta_m) :1
alpha_m = 0.1*(mV**-1)*(v + 30.*mV)/(1 - exp(-0.1*(mV**-1)*(v+30.*mV)))/ms :Hz
beta_m = 4.*exp(-(v+55.*mV)/(18.*mV))/ms :Hz
alpha_n = 0.01*(mV**-1)*(v+34.*mV)/(1-exp(-0.1*(mV**-1)*(v+34.*mV)))/ms :Hz
beta_n = 0.125*exp(-(v+44.*mV)/(80.*mV))/ms :Hz
alpha_h = 0.07*exp(-(v+44.*mV)/(20.*mV))/ms :Hz
beta_h = 1/(1 + exp(-0.1*(mV**-1)*(v+14.*mV)))/ms :Hz
dge/dt = -ge/taue : siemens/meter**2
dgi/dt = -gi/taui : siemens/meter**2
dgext/dt = -gext/taue : siemens/meter**2
''')
# Create population of neurons
Pe = NeuronGroup(Ne, model=eqe,
threshold=EmpiricalThreshold(threshold=10*mV,refractory=2.*ms),method='RK')
Pi = NeuronGroup(Ni, model=eqi,
threshold=EmpiricalThreshold(threshold=10*mV,refractory=2.*ms),method='RK')
# Recurrent connections
Cee=Connection(Pe,Pe,'ge',weight=wee,sparseness=p)
Cie=Connection(Pe,Pi,'ge',weight=wie,sparseness=p)
Cei=Connection(Pi,Pe,'gi',weight=wei,sparseness=p)
Cii=Connection(Pi,Pi,'gi',weight=wii,sparseness=p)
# Create external Poisson spikes
poisson_e = PoissonGroup(Ne, rates = exte)
poisson_i = PoissonGroup(Ni, rates = exti)
# Connect external input to neurons.
inpute = IdentityConnection(poisson_e, Pe, 'gext', weight=wext)
inputi = IdentityConnection(poisson_i, Pi, 'gext', weight=wext)
# Initialization
Pe.v = -80*mV
Pe.ge=(randn(len(Pe))*1.5+4)*10.*nS
Pi.v = -80*mV
Pi.gi=(randn(len(Pi))*1.5+4)*10.*nS
# Record network activity
volte = StateMonitor(Pe,'v',record=[0])
volti = StateMonitor(Pi,'v',record=[0])
Re = PopulationRateMonitor(Pe,bin=1*ms)
Ri = PopulationRateMonitor(Pi,bin=1*ms)
# Run simulations
net = Network(Pe,Pi,poisson_e,poisson_i,Cee,Cie,Cei,Cii,inpute,inputi,volte,volti,Re,Ri)
net.run(sim_time)
# Display results
#==== excitatory and inhibitory rate ====#
pl.figure(1,figsize=(10,4))
axfig2 = pl.subplot(111)
pl.plot(Re.times/ms,Re.rate,'b',linewidth=2,label='exc')
pl.plot(Ri.times/ms,Ri.rate,'r',linewidth=2,label='inh')
pl.ylabel('Hz',fontsize=30)
pl.xlabel('ms',fontsize=30)
pl.xlim([200,2200])
pl.ylim([0,500])
pl.yticks([0,200,400])
# remove boundary
axfig2.spines['top'].set_visible(False)
axfig2.spines['right'].set_visible(False)
axfig2.get_xaxis().tick_bottom()
axfig2.get_yaxis().tick_left()
# legend
pl.legend(loc=4,fontsize=24,frameon=False)
leg = pl.gca().get_legend()
llines=leg.get_lines()
pl.setp(llines,linewidth=3)
#==== hysteresis loops ====#
# external input to excitatory neurons
sim_time = 2200.
tvec = [0., 200., 1200., sim_time]
rvec = [0., 0., ext_max, 0.] #max = 900
def stime(t):
r = 0.
for j in range(len(tvec)-1):
r = r + (rvec[j] + (rvec[j+1]-rvec[j])/(tvec[j+1]-tvec[j])*(t-tvec[j]))*(heavi(t-tvec[j]) - heavi(t-tvec[j+1]))
return r
extinput = []
for i_input in range(len(Re.times)):
extinput.append(stime(Re.times[i_input]*1000.))
extinput = np.array(extinput)
exc_rate = np.array(Re.rate)
pl.figure(2,figsize=(10,8))
axfig2 = pl.subplot(111)
pl.plot(extinput[200:],exc_rate[200:],linewidth=2,label=r'$\mathregular{g_{k}^{inh}}$:'+str(int(gki)) + ' nS')
# remove boundary
axfig2.spines['top'].set_visible(False)
axfig2.spines['right'].set_visible(False)
axfig2.get_xaxis().tick_bottom()
axfig2.get_yaxis().tick_left()
# axis
pl.xlim([0.,ext_max])
pl.xticks([0,4,8])
pl.yticks([0,200,400])
pl.ylim([0,400])
pl.xlabel('external input (kHz)',fontsize=30)
pl.ylabel('excitatory rate (Hz)',fontsize=30)
# legend
pl.legend(loc=4,fontsize=24,frameon=False)
leg = pl.gca().get_legend()
llines=leg.get_lines()
pl.setp(llines,linewidth=3)
matplotlib.rcParams.update({'font.size':24})
reinit_default_clock(t=0*ms)
clear(True)
pl.show()