TITLE cAMP inactivated K-D channel from RBD
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(molar) = (1/liter)
(mM) = (millimolar)
}
NEURON {
THREADSAFE
: note - every variable accessible in NEURON will be having the suffix _KD
SUFFIX KD_cn2
USEION k READ ek WRITE ik
USEION cn READ cni VALENCE 1
RANGE gmax, g, taun, taul
GLOBAL tnmax, tlmax
}
PARAMETER {
gmax=0.01 (mho/cm2)
vhalfn=-52 (mV)
vn2=-65 (mV)
zn=6.0 (mV)
tnmax=20 (ms)
tnmin=1.5 (ms)
tns=-7.5 (mV)
np=2
vhalfl=-67 (mV)
zl=-3.6 (mV)
tlmax=2000 (ms)
tlmin=50 (ms)
vl2=-75 (mV)
tls=14 (mV)
cnvm=25 (mV)
lcp=1 (1)
kD=3e-4 (mM)
taucn=20 (ms)
}
STATE {
n
l
ov (mV)
ovs (mV)
}
ASSIGNED {
v (mV)
ek (mV)
cni (mM)
ik (mA/cm2)
ninf
linf
vs (mV)
taul (ms)
taun (ms)
g (S/cm2)
}
BREAKPOINT {
SOLVE states METHOD cnexp
l = 1/(1+exp((vhalfl-ov+ovs)/zl))
g = gmax*n^np*l
ik = g*(v-ek)
}
INITIAL {
lf(v)
rates(v)
n = ninf
l = 1/(1+exp((vhalfl-v)/zl)*exp(vs/zl))
ov = v
ovs = vs
}
FUNCTION alpn(v(mV)) {
alpn = exp((vhalfn-v)/zn)
}
FUNCTION betn(v(mV)) {
betn = exp((vn2-v)/tns)
}
DERIVATIVE states {
lci(cni)
rates(v)
n' = (ninf - n)/taun
:l' = (linf - l)/taul
:l' = (1/zl)*exp((vhalfl-)/zl)*exp(vs/zl)/(1+exp((vhalfl-v)/zl)*exp(vs/zl))^2
:l' = linf - l
ov' = (v-ov)/taul
ovs' = (vs-ovs)/taucn
}
PROCEDURE lf(v(mV)) {
LOCAL dvdt, dsdt
lci(cni)
:linf = 1/(1+exp((vhalfl-v)/zl)*exp(vs/zl))
linf = 1/(1+exp((vhalfl-ov+ovs)/zl))
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
TABLE ninf, taun, taul DEPEND vhalfn, tlmax, tnmax, tnmin
FROM -100 TO 50 WITH 600
a = alpn(v)
ninf = 1/(1 + a)
taun = 4*(tnmax-tnmin)/(1+betn(v))*ninf+tnmin
taul = 2*tlmax/( exp((v-vl2)/tls) + exp((vl2-v)/tls) ) + tlmin
}
PROCEDURE lci(cni (mM)) { :callable from hoc
TABLE vs DEPEND lcp, kD, cnvm
FROM 0 TO 0.01 WITH 500
vs = cnvm-cnvm/(1+(cni/kD)^lcp)
}