## Steps to generate the bifurcation curves shown in Figure 11 panel C: ## 1) Load this .ode file into XPPAUT ## 2) For the top part of panel C, set gtonic to 0.12 for cyan curve, 0.22 for green curve, and 0.18 magenta curve ## 3) For the bottom part of panel C, set gtonic to 0.57 for green curve and 0.35 for magenta curve (cyan curve is same as top) ## 3) Keystrokes to run simulation and compute bifurcation curve: (i)(g)(i)(l)(f)(a)(r)(s) ## 4) Keystrokes to save the data: (f)(w), and then click on Ok # BRS model fast subsystem with h as bifurcation parameter par h=-2 # Set gtonic as described above for accordingly for panel C par gtonic=0.1247 #par gtonic=0.2194 #par gtonic=0.1806 #par gtonic=0.5709 #par gtonic=0.3461 # parameters par i=0,c=21,etonic=0 par gl=2.8,el=-65 par gna=28,ena=50 par gk=11.2,ek=-85 par gnap=2.8 # gating functions xinf(v,vt,sig)=1/(1+exp((v-vt)/sig)) taux(v,vt,sig,tau)=tau/cosh((v-vt)/(2*sig)) # persistent sodium pinf(v)=xinf(v,-40,-6) inap=gnap*pinf(v)*h*(v-ena) # transient sodium minf(v)=xinf(v,-34,-5) ina=gna*minf(v)^3*(1-n)*(v-ena) # potassium ninf(v)=xinf(v,-29,-4) taun(v)=taux(v,-29,-4,10) ik=gk*n^4*(v-ek) # leak il=gl*(v-el) # tonic itonic=gtonic*(v-etonic) # differential equations v' = (i-il-ina-ik-inap-itonic)/c n'=(ninf(v)-n)/taun(v) init v=-60 # XPP settings @ total=40000,dt=.1,meth=cvode,maxstor=10000000 @ tol=1e-8,atol=1e-8 @ xlo=0,xhi=40000,ylo=-80,yhi=20 # AUTO settings @ parmin=-100,parmax=100,autoxmin=-2,autoxmax=2,autoymin=-80,autoymax=20 @ dsmin=1e-4,dsmax=.1,nmax=500 done