The (free) DynaSim simulator introduced in the paper:
Sherfey JS, Soplata AE, Ardid S, Roberts EA, Stanley DA, Pittman-Polletta BR, Kopell NJ (2018) DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation Frontiers in Neuroinformatics 12:10addpath(genpath('~/Documents/DoNotBackup/DynaSim-master/')) savepath eqns={ 'gNa=120; gK=36; Cm=1' 'INa(v,m,h) = gNa.*m.^3.*h.*(v-50)' % Inactivating sodium current 'IK(v,n) = gK.*n.^4.*(v+77)' % Potassium current 'dv/dt = (10-INa(v,m,h)-IK(v,n))/Cm; v(0)=-65' 'dm/dt = aM(v).*(1-m)-bM(v).*m; m(0)=.1' 'dh/dt = aH(v).*(1-h)-bH(v).*h; h(0)=.1' 'dn/dt = aN(v).*(1-n)-bN(v).*n; n(0)=0' 'aM(v) = (2.5-.1*(v+65))./(exp(2.5-.1*(v+65))-1)' 'bM(v) = 4*exp(-(v+65)/18)' 'aH(v) = .07*exp(-(v+65)/20)' 'bH(v) = 1./(exp(3-.1*(v+65))+1)' 'aN(v) = (.1-.01*(v+65))./(exp(1-.1*(v+65))-1)' 'bN(v) = .125*exp(-(v+65)/80)' }; data = dsSimulate(eqns); % plotting figure; plot(data.time,data.(data.labels{1})) xlabel('time (ms)'); ylabel('membrane potential (mV)'); title('Hodgkin-Huxley neuron')
eqns={ 's=10; r=27; b=2.666' 'dx/dt = s*(y-x); x(0)=1' 'dy/dt = r*x - y - x*z; y(0)=2' 'dz/dt = -b*z + x*y; z(0)=.5' }; data = dsSimulate(eqns, 'tspan',[0 100], 'solver','rk4'); figure; % make a new figure window plot(data.pop1_x,data.pop1_z); % <-- Figure 1 in DynaSim paper title('Lorenz equations'); % asign the figure a title xlabel('x'); % asign the x-axis label ylabel('z'); % asign the y-axis labelThe Lorenz equations and plot is figure 1 in the paper.