SUBROUTINE DEC (N, NDIM, A, IP, IER) C VERSION REAL DOUBLE PRECISION INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J DOUBLE PRECISION A,T DIMENSION A(NDIM,N), IP(N) C----------------------------------------------------------------------- C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION. C INPUT.. C N = ORDER OF MATRIX. C NDIM = DECLARED DIMENSION OF ARRAY A . C A = MATRIX TO BE TRIANGULARIZED. C OUTPUT.. C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U . C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L. C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW. C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O . C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE C SINGULAR AT STAGE K. C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM. C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N). C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO. C C REFERENCE.. C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER, C C.A.C.M. 15 (1972), P. 274. C----------------------------------------------------------------------- IER = 0 IP(N) = 1 IF (N .EQ. 1) GO TO 70 NM1 = N - 1 DO 60 K = 1,NM1 KP1 = K + 1 M = K DO 10 I = KP1,N 10 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I IP(K) = M T = A(M,K) IF (M .EQ. K) GO TO 20 IP(N) = -IP(N) A(M,K) = A(K,K) A(K,K) = T 20 IF (T .EQ. 0.D0) GO TO 80 T = 1.D0/T DO 30 I = KP1,N 30 A(I,K) = -A(I,K)*T DO 50 J = KP1,N T = A(M,J) A(M,J) = A(K,J) A(K,J) = T IF (T .EQ. 0.D0) GO TO 50 DO 40 I = KP1,N 40 A(I,J) = A(I,J) + A(I,K)*T 50 CONTINUE 60 CONTINUE 70 K = N IF (A(N,N) .EQ. 0.D0) GO TO 80 RETURN 80 IER = K IP(N) = 0 RETURN C----------------------- END OF SUBROUTINE DEC ------------------------- END C C SUBROUTINE SOL (N, NDIM, A, B, IP) C VERSION REAL DOUBLE PRECISION INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1 DOUBLE PRECISION A,B,T DIMENSION A(NDIM,N), B(N), IP(N) C----------------------------------------------------------------------- C SOLUTION OF LINEAR SYSTEM, A*X = B . C INPUT.. C N = ORDER OF MATRIX. C NDIM = DECLARED DIMENSION OF ARRAY A . C A = TRIANGULARIZED MATRIX OBTAINED FROM DEC. C B = RIGHT HAND SIDE VECTOR. C IP = PIVOT VECTOR OBTAINED FROM DEC. C DO NOT USE IF DEC HAS SET IER .NE. 0. C OUTPUT.. C B = SOLUTION VECTOR, X . C----------------------------------------------------------------------- IF (N .EQ. 1) GO TO 50 NM1 = N - 1 DO 20 K = 1,NM1 KP1 = K + 1 M = IP(K) T = B(M) B(M) = B(K) B(K) = T DO 10 I = KP1,N 10 B(I) = B(I) + A(I,K)*T 20 CONTINUE DO 40 KB = 1,NM1 KM1 = N - KB K = KM1 + 1 B(K) = B(K)/A(K,K) T = -B(K) DO 30 I = 1,KM1 30 B(I) = B(I) + A(I,K)*T 40 CONTINUE 50 B(1) = B(1)/A(1,1) RETURN C----------------------- END OF SUBROUTINE SOL ------------------------- END c c SUBROUTINE DECH (N, NDIM, A, LB, IP, IER) C VERSION REAL DOUBLE PRECISION INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J,LB,NA DOUBLE PRECISION A,T DIMENSION A(NDIM,N), IP(N) C----------------------------------------------------------------------- C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A HESSENBERG C MATRIX WITH LOWER BANDWIDTH LB C INPUT.. C N = ORDER OF MATRIX A. C NDIM = DECLARED DIMENSION OF ARRAY A . C A = MATRIX TO BE TRIANGULARIZED. C LB = LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED, LB.GE.1). C OUTPUT.. C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U . C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L. C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW. C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O . C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE C SINGULAR AT STAGE K. C USE SOLH TO OBTAIN SOLUTION OF LINEAR SYSTEM. C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N). C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO. C C REFERENCE.. C THIS IS A SLIGHT MODIFICATION OF C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER, C C.A.C.M. 15 (1972), P. 274. C----------------------------------------------------------------------- IER = 0 IP(N) = 1 IF (N .EQ. 1) GO TO 70 NM1 = N - 1 DO 60 K = 1,NM1 KP1 = K + 1 M = K NA = MIN0(N,LB+K) DO 10 I = KP1,NA 10 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I IP(K) = M T = A(M,K) IF (M .EQ. K) GO TO 20 IP(N) = -IP(N) A(M,K) = A(K,K) A(K,K) = T 20 IF (T .EQ. 0.D0) GO TO 80 T = 1.D0/T DO 30 I = KP1,NA 30 A(I,K) = -A(I,K)*T DO 50 J = KP1,N T = A(M,J) A(M,J) = A(K,J) A(K,J) = T IF (T .EQ. 0.D0) GO TO 50 DO 40 I = KP1,NA 40 A(I,J) = A(I,J) + A(I,K)*T 50 CONTINUE 60 CONTINUE 70 K = N IF (A(N,N) .EQ. 0.D0) GO TO 80 RETURN 80 IER = K IP(N) = 0 RETURN C----------------------- END OF SUBROUTINE DECH ------------------------ END C C SUBROUTINE SOLH (N, NDIM, A, LB, B, IP) C VERSION REAL DOUBLE PRECISION INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1,LB,NA DOUBLE PRECISION A,B,T DIMENSION A(NDIM,N), B(N), IP(N) C----------------------------------------------------------------------- C SOLUTION OF LINEAR SYSTEM, A*X = B . C INPUT.. C N = ORDER OF MATRIX A. C NDIM = DECLARED DIMENSION OF ARRAY A . C A = TRIANGULARIZED MATRIX OBTAINED FROM DECH. C LB = LOWER BANDWIDTH OF A. C B = RIGHT HAND SIDE VECTOR. C IP = PIVOT VECTOR OBTAINED FROM DEC. C DO NOT USE IF DECH HAS SET IER .NE. 0. C OUTPUT.. C B = SOLUTION VECTOR, X . C----------------------------------------------------------------------- IF (N .EQ. 1) GO TO 50 NM1 = N - 1 DO 20 K = 1,NM1 KP1 = K + 1 M = IP(K) T = B(M) B(M) = B(K) B(K) = T NA = MIN0(N,LB+K) DO 10 I = KP1,NA 10 B(I) = B(I) + A(I,K)*T 20 CONTINUE DO 40 KB = 1,NM1 KM1 = N - KB K = KM1 + 1 B(K) = B(K)/A(K,K) T = -B(K) DO 30 I = 1,KM1 30 B(I) = B(I) + A(I,K)*T 40 CONTINUE 50 B(1) = B(1)/A(1,1) RETURN C----------------------- END OF SUBROUTINE SOLH ------------------------ END C SUBROUTINE DECC (N, NDIM, AR, AI, IP, IER) C VERSION COMPLEX DOUBLE PRECISION IMPLICIT REAL*8 (A-H,O-Z) INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N) C----------------------------------------------------------------------- C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION C ------ MODIFICATION FOR COMPLEX MATRICES -------- C INPUT.. C N = ORDER OF MATRIX. C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI . C (AR, AI) = MATRIX TO BE TRIANGULARIZED. C OUTPUT.. C AR(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; REAL PART. C AI(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; IMAGINARY PART. C AR(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L. C REAL PART. C AI(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L. C IMAGINARY PART. C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW. C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O . C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE C SINGULAR AT STAGE K. C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM. C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO. C C REFERENCE.. C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER, C C.A.C.M. 15 (1972), P. 274. C----------------------------------------------------------------------- IER = 0 IP(N) = 1 IF (N .EQ. 1) GO TO 70 NM1 = N - 1 DO 60 K = 1,NM1 KP1 = K + 1 M = K DO 10 I = KP1,N 10 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT. & DABS(AR(M,K))+DABS(AI(M,K))) M = I IP(K) = M TR = AR(M,K) TI = AI(M,K) IF (M .EQ. K) GO TO 20 IP(N) = -IP(N) AR(M,K) = AR(K,K) AI(M,K) = AI(K,K) AR(K,K) = TR AI(K,K) = TI 20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80 DEN=TR*TR+TI*TI TR=TR/DEN TI=-TI/DEN DO 30 I = KP1,N PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI AR(I,K)=-PRODR AI(I,K)=-PRODI 30 CONTINUE DO 50 J = KP1,N TR = AR(M,J) TI = AI(M,J) AR(M,J) = AR(K,J) AI(M,J) = AI(K,J) AR(K,J) = TR AI(K,J) = TI IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 50 IF (TI .EQ. 0.D0) THEN DO 40 I = KP1,N PRODR=AR(I,K)*TR PRODI=AI(I,K)*TR AR(I,J) = AR(I,J) + PRODR AI(I,J) = AI(I,J) + PRODI 40 CONTINUE GO TO 50 END IF IF (TR .EQ. 0.D0) THEN DO 45 I = KP1,N PRODR=-AI(I,K)*TI PRODI=AR(I,K)*TI AR(I,J) = AR(I,J) + PRODR AI(I,J) = AI(I,J) + PRODI 45 CONTINUE GO TO 50 END IF DO 47 I = KP1,N PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI AR(I,J) = AR(I,J) + PRODR AI(I,J) = AI(I,J) + PRODI 47 CONTINUE 50 CONTINUE 60 CONTINUE 70 K = N IF (DABS(AR(N,N))+DABS(AI(N,N)) .EQ. 0.D0) GO TO 80 RETURN 80 IER = K IP(N) = 0 RETURN C----------------------- END OF SUBROUTINE DECC ------------------------ END C C SUBROUTINE SOLC (N, NDIM, AR, AI, BR, BI, IP) C VERSION COMPLEX DOUBLE PRECISION IMPLICIT REAL*8 (A-H,O-Z) INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1 DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N) C----------------------------------------------------------------------- C SOLUTION OF LINEAR SYSTEM, A*X = B . C INPUT.. C N = ORDER OF MATRIX. C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI. C (AR,AI) = TRIANGULARIZED MATRIX OBTAINED FROM DEC. C (BR,BI) = RIGHT HAND SIDE VECTOR. C IP = PIVOT VECTOR OBTAINED FROM DEC. C DO NOT USE IF DEC HAS SET IER .NE. 0. C OUTPUT.. C (BR,BI) = SOLUTION VECTOR, X . C----------------------------------------------------------------------- IF (N .EQ. 1) GO TO 50 NM1 = N - 1 DO 20 K = 1,NM1 KP1 = K + 1 M = IP(K) TR = BR(M) TI = BI(M) BR(M) = BR(K) BI(M) = BI(K) BR(K) = TR BI(K) = TI DO 10 I = KP1,N PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI BR(I) = BR(I) + PRODR BI(I) = BI(I) + PRODI 10 CONTINUE 20 CONTINUE DO 40 KB = 1,NM1 KM1 = N - KB K = KM1 + 1 DEN=AR(K,K)*AR(K,K)+AI(K,K)*AI(K,K) PRODR=BR(K)*AR(K,K)+BI(K)*AI(K,K) PRODI=BI(K)*AR(K,K)-BR(K)*AI(K,K) BR(K)=PRODR/DEN BI(K)=PRODI/DEN TR = -BR(K) TI = -BI(K) DO 30 I = 1,KM1 PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI BR(I) = BR(I) + PRODR BI(I) = BI(I) + PRODI 30 CONTINUE 40 CONTINUE 50 CONTINUE DEN=AR(1,1)*AR(1,1)+AI(1,1)*AI(1,1) PRODR=BR(1)*AR(1,1)+BI(1)*AI(1,1) PRODI=BI(1)*AR(1,1)-BR(1)*AI(1,1) BR(1)=PRODR/DEN BI(1)=PRODI/DEN RETURN C----------------------- END OF SUBROUTINE SOLC ------------------------ END C C SUBROUTINE DECHC (N, NDIM, AR, AI, LB, IP, IER) C VERSION COMPLEX DOUBLE PRECISION IMPLICIT REAL*8 (A-H,O-Z) INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N) C----------------------------------------------------------------------- C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION C ------ MODIFICATION FOR COMPLEX MATRICES -------- C INPUT.. C N = ORDER OF MATRIX. C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI . C (AR, AI) = MATRIX TO BE TRIANGULARIZED. C OUTPUT.. C AR(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; REAL PART. C AI(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; IMAGINARY PART. C AR(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L. C REAL PART. C AI(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L. C IMAGINARY PART. C LB = LOWER BANDWIDTH OF A (DIAGONAL NOT COUNTED), LB.GE.1. C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW. C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O . C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE C SINGULAR AT STAGE K. C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM. C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO. C C REFERENCE.. C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER, C C.A.C.M. 15 (1972), P. 274. C----------------------------------------------------------------------- IER = 0 IP(N) = 1 IF (LB .EQ. 0) GO TO 70 IF (N .EQ. 1) GO TO 70 NM1 = N - 1 DO 60 K = 1,NM1 KP1 = K + 1 M = K NA = MIN0(N,LB+K) DO 10 I = KP1,NA 10 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT. & DABS(AR(M,K))+DABS(AI(M,K))) M = I IP(K) = M TR = AR(M,K) TI = AI(M,K) IF (M .EQ. K) GO TO 20 IP(N) = -IP(N) AR(M,K) = AR(K,K) AI(M,K) = AI(K,K) AR(K,K) = TR AI(K,K) = TI 20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80 DEN=TR*TR+TI*TI TR=TR/DEN TI=-TI/DEN DO 30 I = KP1,NA PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI AR(I,K)=-PRODR AI(I,K)=-PRODI 30 CONTINUE DO 50 J = KP1,N TR = AR(M,J) TI = AI(M,J) AR(M,J) = AR(K,J) AI(M,J) = AI(K,J) AR(K,J) = TR AI(K,J) = TI IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 50 IF (TI .EQ. 0.D0) THEN DO 40 I = KP1,NA PRODR=AR(I,K)*TR PRODI=AI(I,K)*TR AR(I,J) = AR(I,J) + PRODR AI(I,J) = AI(I,J) + PRODI 40 CONTINUE GO TO 50 END IF IF (TR .EQ. 0.D0) THEN DO 45 I = KP1,NA PRODR=-AI(I,K)*TI PRODI=AR(I,K)*TI AR(I,J) = AR(I,J) + PRODR AI(I,J) = AI(I,J) + PRODI 45 CONTINUE GO TO 50 END IF DO 47 I = KP1,NA PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI AR(I,J) = AR(I,J) + PRODR AI(I,J) = AI(I,J) + PRODI 47 CONTINUE 50 CONTINUE 60 CONTINUE 70 K = N IF (DABS(AR(N,N))+DABS(AI(N,N)) .EQ. 0.D0) GO TO 80 RETURN 80 IER = K IP(N) = 0 RETURN C----------------------- END OF SUBROUTINE DECHC ----------------------- END C C SUBROUTINE SOLHC (N, NDIM, AR, AI, LB, BR, BI, IP) C VERSION COMPLEX DOUBLE PRECISION IMPLICIT REAL*8 (A-H,O-Z) INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1 DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N) C----------------------------------------------------------------------- C SOLUTION OF LINEAR SYSTEM, A*X = B . C INPUT.. C N = ORDER OF MATRIX. C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI. C (AR,AI) = TRIANGULARIZED MATRIX OBTAINED FROM DEC. C (BR,BI) = RIGHT HAND SIDE VECTOR. C LB = LOWER BANDWIDTH OF A. C IP = PIVOT VECTOR OBTAINED FROM DEC. C DO NOT USE IF DEC HAS SET IER .NE. 0. C OUTPUT.. C (BR,BI) = SOLUTION VECTOR, X . C----------------------------------------------------------------------- IF (N .EQ. 1) GO TO 50 NM1 = N - 1 IF (LB .EQ. 0) GO TO 9999 DO 20 K = 1,NM1 KP1 = K + 1 M = IP(K) TR = BR(M) TI = BI(M) BR(M) = BR(K) BI(M) = BI(K) BR(K) = TR BI(K) = TI DO 10 I = KP1,MIN0(N,LB+K) PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI BR(I) = BR(I) + PRODR BI(I) = BI(I) + PRODI 10 CONTINUE 20 CONTINUE 9999 CONTINUE DO 40 KB = 1,NM1 KM1 = N - KB K = KM1 + 1 DEN=AR(K,K)*AR(K,K)+AI(K,K)*AI(K,K) PRODR=BR(K)*AR(K,K)+BI(K)*AI(K,K) PRODI=BI(K)*AR(K,K)-BR(K)*AI(K,K) BR(K)=PRODR/DEN BI(K)=PRODI/DEN TR = -BR(K) TI = -BI(K) DO 30 I = 1,KM1 PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI BR(I) = BR(I) + PRODR BI(I) = BI(I) + PRODI 30 CONTINUE 40 CONTINUE 50 CONTINUE DEN=AR(1,1)*AR(1,1)+AI(1,1)*AI(1,1) PRODR=BR(1)*AR(1,1)+BI(1)*AI(1,1) PRODI=BI(1)*AR(1,1)-BR(1)*AI(1,1) BR(1)=PRODR/DEN BI(1)=PRODI/DEN RETURN C----------------------- END OF SUBROUTINE SOLHC ----------------------- END C SUBROUTINE DECB (N, NDIM, A, ML, MU, IP, IER) REAL*8 A,T DIMENSION A(NDIM,N), IP(N) C----------------------------------------------------------------------- C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A BANDED C MATRIX WITH LOWER BANDWIDTH ML AND UPPER BANDWIDTH MU C INPUT.. C N ORDER OF THE ORIGINAL MATRIX A. C NDIM DECLARED DIMENSION OF ARRAY A. C A CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS C OF THE MATRIX ARE STORED IN THE COLUMNS OF A AND C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS C ML+1 THROUGH 2*ML+MU+1 OF A. C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C OUTPUT.. C A AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT. C IP INDEX VECTOR OF PIVOT INDICES. C IP(N) (-1)**(NUMBER OF INTERCHANGES) OR O . C IER = 0 IF MATRIX A IS NONSINGULAR, OR = K IF FOUND TO BE C SINGULAR AT STAGE K. C USE SOLB TO OBTAIN SOLUTION OF LINEAR SYSTEM. C DETERM(A) = IP(N)*A(MD,1)*A(MD,2)*...*A(MD,N) WITH MD=ML+MU+1. C IF IP(N)=O, A IS SINGULAR, SOLB WILL DIVIDE BY ZERO. C C REFERENCE.. C THIS IS A MODIFICATION OF C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER, C C.A.C.M. 15 (1972), P. 274. C----------------------------------------------------------------------- IER = 0 IP(N) = 1 MD = ML + MU + 1 MD1 = MD + 1 JU = 0 IF (ML .EQ. 0) GO TO 70 IF (N .EQ. 1) GO TO 70 IF (N .LT. MU+2) GO TO 7 DO 5 J = MU+2,N DO 5 I = 1,ML 5 A(I,J) = 0.D0 7 NM1 = N - 1 DO 60 K = 1,NM1 KP1 = K + 1 M = MD MDL = MIN(ML,N-K) + MD DO 10 I = MD1,MDL 10 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I IP(K) = M + K - MD T = A(M,K) IF (M .EQ. MD) GO TO 20 IP(N) = -IP(N) A(M,K) = A(MD,K) A(MD,K) = T 20 IF (T .EQ. 0.D0) GO TO 80 T = 1.D0/T DO 30 I = MD1,MDL 30 A(I,K) = -A(I,K)*T JU = MIN0(MAX0(JU,MU+IP(K)),N) MM = MD IF (JU .LT. KP1) GO TO 60 DO 50 J = KP1,JU M = M - 1 MM = MM - 1 T = A(M,J) IF (M .EQ. MM) GO TO 35 A(M,J) = A(MM,J) A(MM,J) = T 35 IF (T .EQ. 0.D0) GO TO 50 JK = J - K DO 40 I = MD1,MDL IJK = I - JK 40 A(IJK,J) = A(IJK,J) + A(I,K)*T 50 CONTINUE 60 CONTINUE 70 K = N IF (A(MD,N) .EQ. 0.D0) GO TO 80 RETURN 80 IER = K IP(N) = 0 RETURN C----------------------- END OF SUBROUTINE DECB ------------------------ END C C SUBROUTINE SOLB (N, NDIM, A, ML, MU, B, IP) REAL*8 A,B,T DIMENSION A(NDIM,N), B(N), IP(N) C----------------------------------------------------------------------- C SOLUTION OF LINEAR SYSTEM, A*X = B . C INPUT.. C N ORDER OF MATRIX A. C NDIM DECLARED DIMENSION OF ARRAY A . C A TRIANGULARIZED MATRIX OBTAINED FROM DECB. C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C B RIGHT HAND SIDE VECTOR. C IP PIVOT VECTOR OBTAINED FROM DECB. C DO NOT USE IF DECB HAS SET IER .NE. 0. C OUTPUT.. C B SOLUTION VECTOR, X . C----------------------------------------------------------------------- MD = ML + MU + 1 MD1 = MD + 1 MDM = MD - 1 IF (ML .EQ. 0) GO TO 9998 IF (N .EQ. 1) GO TO 50 NM1 = N - 1 DO 20 K = 1,NM1 M = IP(K) T = B(M) B(M) = B(K) B(K) = T MDL = MIN(ML,N-K) + MD DO 10 I = MD1,MDL IMD = I + K - MD 10 B(IMD) = B(IMD) + A(I,K)*T 20 CONTINUE 9998 CONTINUE DO 40 KB = 1,NM1 K = N + 1 - KB B(K) = B(K)/A(MD,K) T = -B(K) KMD = MD - K LM = MAX0(1,KMD+1) DO 30 I = LM,MDM IMD = I - KMD 30 B(IMD) = B(IMD) + A(I,K)*T 40 CONTINUE 50 B(1) = B(1)/A(MD,1) RETURN C----------------------- END OF SUBROUTINE SOLB ------------------------ END C SUBROUTINE DECBC (N, NDIM, AR, AI, ML, MU, IP, IER) IMPLICIT REAL*8 (A-H,O-Z) DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N) C----------------------------------------------------------------------- C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A BANDED COMPLEX C MATRIX WITH LOWER BANDWIDTH ML AND UPPER BANDWIDTH MU C INPUT.. C N ORDER OF THE ORIGINAL MATRIX A. C NDIM DECLARED DIMENSION OF ARRAY A. C AR, AI CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS C OF THE MATRIX ARE STORED IN THE COLUMNS OF AR (REAL C PART) AND AI (IMAGINARY PART) AND C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS C ML+1 THROUGH 2*ML+MU+1 OF AR AND AI. C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C OUTPUT.. C AR, AI AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT. C IP INDEX VECTOR OF PIVOT INDICES. C IP(N) (-1)**(NUMBER OF INTERCHANGES) OR O . C IER = 0 IF MATRIX A IS NONSINGULAR, OR = K IF FOUND TO BE C SINGULAR AT STAGE K. C USE SOLBC TO OBTAIN SOLUTION OF LINEAR SYSTEM. C DETERM(A) = IP(N)*A(MD,1)*A(MD,2)*...*A(MD,N) WITH MD=ML+MU+1. C IF IP(N)=O, A IS SINGULAR, SOLBC WILL DIVIDE BY ZERO. C C REFERENCE.. C THIS IS A MODIFICATION OF C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER, C C.A.C.M. 15 (1972), P. 274. C----------------------------------------------------------------------- IER = 0 IP(N) = 1 MD = ML + MU + 1 MD1 = MD + 1 JU = 0 IF (ML .EQ. 0) GO TO 70 IF (N .EQ. 1) GO TO 70 IF (N .LT. MU+2) GO TO 7 DO 5 J = MU+2,N DO 5 I = 1,ML AR(I,J) = 0.D0 AI(I,J) = 0.D0 5 CONTINUE 7 NM1 = N - 1 DO 60 K = 1,NM1 KP1 = K + 1 M = MD MDL = MIN(ML,N-K) + MD DO 10 I = MD1,MDL 10 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT. & DABS(AR(M,K))+DABS(AI(M,K))) M = I IP(K) = M + K - MD TR = AR(M,K) TI = AI(M,K) IF (M .EQ. MD) GO TO 20 IP(N) = -IP(N) AR(M,K) = AR(MD,K) AI(M,K) = AI(MD,K) AR(MD,K) = TR AI(MD,K) = TI 20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80 DEN=TR*TR+TI*TI TR=TR/DEN TI=-TI/DEN DO 30 I = MD1,MDL PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI AR(I,K)=-PRODR AI(I,K)=-PRODI 30 CONTINUE JU = MIN0(MAX0(JU,MU+IP(K)),N) MM = MD IF (JU .LT. KP1) GO TO 60 DO 50 J = KP1,JU M = M - 1 MM = MM - 1 TR = AR(M,J) TI = AI(M,J) IF (M .EQ. MM) GO TO 35 AR(M,J) = AR(MM,J) AI(M,J) = AI(MM,J) AR(MM,J) = TR AI(MM,J) = TI 35 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 50 JK = J - K IF (TI .EQ. 0.D0) THEN DO 40 I = MD1,MDL IJK = I - JK PRODR=AR(I,K)*TR PRODI=AI(I,K)*TR AR(IJK,J) = AR(IJK,J) + PRODR AI(IJK,J) = AI(IJK,J) + PRODI 40 CONTINUE GO TO 50 END IF IF (TR .EQ. 0.D0) THEN DO 45 I = MD1,MDL IJK = I - JK PRODR=-AI(I,K)*TI PRODI=AR(I,K)*TI AR(IJK,J) = AR(IJK,J) + PRODR AI(IJK,J) = AI(IJK,J) + PRODI 45 CONTINUE GO TO 50 END IF DO 47 I = MD1,MDL IJK = I - JK PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI AR(IJK,J) = AR(IJK,J) + PRODR AI(IJK,J) = AI(IJK,J) + PRODI 47 CONTINUE 50 CONTINUE 60 CONTINUE 70 K = N IF (DABS(AR(MD,N))+DABS(AI(MD,N)) .EQ. 0.D0) GO TO 80 RETURN 80 IER = K IP(N) = 0 RETURN C----------------------- END OF SUBROUTINE DECBC ------------------------ END C C SUBROUTINE SOLBC (N, NDIM, AR, AI, ML, MU, BR, BI, IP) IMPLICIT REAL*8 (A-H,O-Z) DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N) C----------------------------------------------------------------------- C SOLUTION OF LINEAR SYSTEM, A*X = B , C VERSION BANDED AND COMPLEX-DOUBLE PRECISION. C INPUT.. C N ORDER OF MATRIX A. C NDIM DECLARED DIMENSION OF ARRAY A . C AR, AI TRIANGULARIZED MATRIX OBTAINED FROM DECB (REAL AND IMAG. PART). C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED). C BR, BI RIGHT HAND SIDE VECTOR (REAL AND IMAG. PART). C IP PIVOT VECTOR OBTAINED FROM DECBC. C DO NOT USE IF DECB HAS SET IER .NE. 0. C OUTPUT.. C BR, BI SOLUTION VECTOR, X (REAL AND IMAG. PART). C----------------------------------------------------------------------- MD = ML + MU + 1 MD1 = MD + 1 MDM = MD - 1 IF (ML .EQ. 0) GO TO 9997 IF (N .EQ. 1) GO TO 50 NM1 = N - 1 DO 20 K = 1,NM1 M = IP(K) TR = BR(M) TI = BI(M) BR(M) = BR(K) BI(M) = BI(K) BR(K) = TR BI(K) = TI MDL = MIN(ML,N-K) + MD DO 10 I = MD1,MDL IMD = I + K - MD PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI BR(IMD) = BR(IMD) + PRODR BI(IMD) = BI(IMD) + PRODI 10 CONTINUE 20 CONTINUE 9997 CONTINUE DO 40 KB = 1,NM1 K = N + 1 - KB DEN=AR(MD,K)*AR(MD,K)+AI(MD,K)*AI(MD,K) PRODR=BR(K)*AR(MD,K)+BI(K)*AI(MD,K) PRODI=BI(K)*AR(MD,K)-BR(K)*AI(MD,K) BR(K)=PRODR/DEN BI(K)=PRODI/DEN TR = -BR(K) TI = -BI(K) KMD = MD - K LM = MAX0(1,KMD+1) DO 30 I = LM,MDM IMD = I - KMD PRODR=AR(I,K)*TR-AI(I,K)*TI PRODI=AI(I,K)*TR+AR(I,K)*TI BR(IMD) = BR(IMD) + PRODR BI(IMD) = BI(IMD) + PRODI 30 CONTINUE 40 CONTINUE DEN=AR(MD,1)*AR(MD,1)+AI(MD,1)*AI(MD,1) PRODR=BR(1)*AR(MD,1)+BI(1)*AI(MD,1) PRODI=BI(1)*AR(MD,1)-BR(1)*AI(MD,1) BR(1)=PRODR/DEN BI(1)=PRODI/DEN 50 CONTINUE RETURN C----------------------- END OF SUBROUTINE SOLBC ------------------------ END c C subroutine elmhes(nm,n,low,igh,a,int) C integer i,j,m,n,la,nm,igh,kp1,low,mm1,mp1 real*8 a(nm,n) real*8 x,y real*8 dabs integer int(igh) C C this subroutine is a translation of the algol procedure elmhes, C num. math. 12, 349-368(1968) by martin and wilkinson. C handbook for auto. comp., vol.ii-linear algebra, 339-358(1971). C C given a real general matrix, this subroutine C reduces a submatrix situated in rows and columns C low through igh to upper hessenberg form by C stabilized elementary similarity transformations. C C on input: C C nm must be set to the row dimension of two-dimensional C array parameters as declared in the calling program C dimension statement; C C n is the order of the matrix; C C low and igh are integers determined by the balancing C subroutine balanc. if balanc has not been used, C set low=1, igh=n; C C a contains the input matrix. C C on output: C C a contains the hessenberg matrix. the multipliers C which were used in the reduction are stored in the C remaining triangle under the hessenberg matrix; C C int contains information on the rows and columns C interchanged in the reduction. C only elements low through igh are used. C C questions and comments should be directed to b. s. garbow, C applied mathematics division, argonne national laboratory C C ------------------------------------------------------------------ C la = igh - 1 kp1 = low + 1 if (la .lt. kp1) go to 200 C do 180 m = kp1, la mm1 = m - 1 x = 0.0d0 i = m C do 100 j = m, igh if (dabs(a(j,mm1)) .le. dabs(x)) go to 100 x = a(j,mm1) i = j 100 continue C int(m) = i if (i .eq. m) go to 130 C :::::::::: interchange rows and columns of a :::::::::: do 110 j = mm1, n y = a(i,j) a(i,j) = a(m,j) a(m,j) = y 110 continue C do 120 j = 1, igh y = a(j,i) a(j,i) = a(j,m) a(j,m) = y 120 continue C :::::::::: end interchange :::::::::: 130 if (x .eq. 0.0d0) go to 180 mp1 = m + 1 C do 160 i = mp1, igh y = a(i,mm1) if (y .eq. 0.0d0) go to 160 y = y / x a(i,mm1) = y C do 140 j = m, n 140 a(i,j) = a(i,j) - y * a(m,j) C do 150 j = 1, igh 150 a(j,m) = a(j,m) + y * a(j,i) C 160 continue C 180 continue C 200 return C :::::::::: last card of elmhes :::::::::: end