import numpy as np
comboTest=True
allcombo=1
if allcombo==1:
files=['GbgC100cAMPC500_LTP',
'CaC500_LTP',
'GbgC100CaC500cAMPC500_LTP']
outname='allCombo_Ca500'
names=['cAMPC500GbgC100','CaC500','Combo']
if allcombo==2 :
files=['GbgC100cAMPC500_LTP',
'CaC1000_LTP',
'GbgC100CaC1000cAMPC500_LTP']
outname='allCombo_Ca1000'
names=['cAMPC500GbgC100','CaC1000','Combo']
if allcombo==3 :
files=['GbgC100cAMPC500PP1R50_LTP',
'CaC1000PP1R50_LTP',
'GbgC100CaC1000cAMPC500PP1R50_LTP']
outname='allCombo_Ca1000PP1R50'
names=['cAMPC500GbgC100PP1R50','CaC1000PP1R50','Combo']
if allcombo==4:
files=['GbgC100cAMPC50BEpacRap_LTP',
'GbgC100cAMPC50BPKARap_LTP',
'GbgC100_LTP',
'GbgC100cAMPC500_LTP']
outname='cAMPGbg2Combo'
names=['PKA','Epac','GbgC100','Combo']
if allcombo==5:
files=['cAMPC500_LTP',
'GbgC100_LTP',
'GbgC100cAMPC500_LTP']
outname='cAMPGbgCombo'
names=['cAMPC500','GbgC100','Combo']
alldata=[]
for fname in files:
#print(fname)
with open(fname+'.txt') as f:
data = []
for line in f.readlines():
data.append(line.split())
param1=[dat[0] for dat in data[1:]]
start_column=1
trials=data[0][1:]
#test header
if len(data[0])<len(data[1]):
param2=[dat[1] for dat in data[1:]]
start_column=2
new_column=np.zeros(len(param1)*len(trials))
new_param=[]
new_trials=[]
for row,dat in enumerate(data[1:]):
for col,num in enumerate(dat[start_column:]):
if len(data[0])<len(data[1]):
new_param.append([param1[row],param2[row]])
else:
new_param.append(param1[row])
new_trials.append(trials[col])
new_column[row*len(trials)+col]=data[row+1][col+start_column]
alldata.append(new_column)
outputdata=np.zeros((len(new_column),len(alldata)+2))
for i in range(len(alldata)):
outputdata[:,i]=alldata[i]
outputdata=np.column_stack((new_param,new_trials,outputdata))
header='ITI Trial '+' '.join(names)
output_name=outname+'_LTP-lineartest.txt'
with open(output_name,'w') as f:
np.savetxt(f, outputdata, fmt="%s", header=header,comments='#')