# initial conditions #full system steady state #init v=-50.39614 nK=0.06187592 hNaP=0.1852592 hH=0.1362835 mLVA=0.06024908 hLVA=0.2716246 mBK=0.0902021 ca=0.0006561159 nHVK=0.06383691 # reduced for bifurcation init v=-50.39614 nK=0.06187592 hNaP=0.1852592 hH=0.1362835 mLVA=0.06024908 ca=0.0006561159 nHVK=0.06383691 #other parameters #external current (microA/cm^2) par mBK=0.2 # mBK = -1.6*hLVA + 0.42 hLVA = -(mBK - 0.42)/1.6 par Iapp=0 #capacitance (microF/cm^2) par C=21 #concentration of calcium (mM) par Ca0=0.00002 #calcium concentration time constant (ms) par tau_Ca=8 #accounts for quick calcium buffering par Ca_buffer=0.5 #Faraday's constant (C/mol) par F=96485 #valence (unitless number) par Ca_z=2 #depth where calcuim concentration is relevent (microns) par d=1 #nernst potentials par vL=-62.5, vNa=45, vK=-105, vH=-35, vCa=120 #conductances par gL=2.5, gNa=29.17, gK=12.96, gH=20, gLVA=15.0213, gNaP=8.3244 par gHVA=2.0, gBK=5.0, gHVK=10.0 #Na par theta_mNa=-25, sigma_mNa=-6.5 #K par theta_nK=-26, sigma_nK=-9, tau_nK=10 #LVA par theta_mLVA=-37.1, sigma_mLVA=-4.8916, tau_mLVA=20 par theta_hLVA=-59.2, sigma_hLVA=13.2326, tau_hLVA=350 #NaP par theta_mNaP=-40, sigma_mNaP=-4 par theta_hNaP=-54, sigma_hNaP=5, tau_hNaP=500 #H par theta_hH=-61.3, sigma_hH=5.855 par tau_hH_T=100, delta_hH_T=0.205, theta_hH_T=-65.95, sigma_hH_T=4.44 #BK par mBK_base=170 # auxilliary functions theta_mBK = -20.0 + 59.2*exp(-90.0*Ca) + 96.7*exp(-470.0*Ca) p = 2.9 + 6.3*exp(-360*Ca) s = -25.3 + 107.5*exp(-120.0*Ca) eff = 1.0/(10.0*(exp(-(V+100.0-s)/63.6)+exp((-150.0+(V+100.0-s))/63.6))) - 5.2 mHVK = 1.0/(1.0+exp(-(V+40)/2)) # infinity curves mNa_inf = 1.0/(1.0+exp((V-theta_mNa)/sigma_mNa)) nK_inf = 1.0/(1.0+exp((V-theta_nK)/sigma_nK)) hNaP_inf = 1.0/(1.0+exp((V-theta_hNaP)/sigma_hNaP)) hH_inf = 1.0/(1.0+exp((V-theta_hH)/sigma_hH)) mLVA_inf = 1.0/(1.0+exp((V-theta_mLVA)/sigma_mLVA)) hLVA_inf = 1.0/(1.0+exp((V-theta_hLVA)/sigma_hLVA)) mNaP_inf = 1.0/(1.0+exp((V-theta_mNaP)/sigma_mNaP)) mHVA_inf = 1.0/(1.0+exp(-(V + 10.0)/6.5)) mBK_inf = 1.0/(1.0+exp((theta_mBK - V)/15.6)) nHVK_inf = 1.0/(1.0+exp(-(V+30)/2)) #time constants nK_tau = tau_nK/cosh((V-theta_nK)/(2.0*sigma_nK)) hNaP_tau = tau_hNaP/cosh((V-theta_hNaP)/(2.0*sigma_hNaP)) hH_tau = tau_hH_T*exp(delta_hH_T*(V-theta_hH_T)/sigma_hH_T) / (1+exp((V-theta_hH_T)/sigma_hH_T)) mLVA_tau = tau_mLVA/cosh((V-theta_mLVA)/(2.0*sigma_mLVA)) hLVA_tau = tau_hLVA/cosh((V-theta_hLVA)/(2.0*sigma_hLVA)) mBK_tau = -(p - 1.0)*(eff - 0.2)/0.8 + mBK_base nHVK_tau = 1000/(1.0+exp(-(V+35))) + 1000 #currents INa = gNa*(1.0-nK)*mNa_inf*mNa_inf*mNa_inf*(V-vNa) IHVK = gHVK*mHVK*nHVK*(V - vK) IK = gK*nK*nK*nK*nK*(V-vK) IL = gL*(V-vL) IH = gH*hH*(V-vH) INaP = gNaP*mNaP_inf*hNaP*(V-vNa) ILVA = gLVA*mLVA*mLVA*hLVA*(V-vCa) IHVA = gHVA*mHVA_inf*(V-vCa) IBK = gBK*mBK*(V-vK) # ODEs V' = -(INa + IK + ILVA + IH + INaP + IL + IHVA + IBK + IHVK - Iapp)/C nK' = (nK_inf-nK)/nK_tau hNaP' = (hNaP_inf-hNaP)/hNaP_tau hH' = (hH_inf-hH)/hH_tau mLVA' = (mLVA_inf-mLVA)/mLVA_tau #hLVA' = (hLVA_inf-hLVA)/hLVA_tau #mBK' = (mBK_inf - mBK)/mBK_tau Ca' = -Ca_buffer*10.0*(ILVA + IHVA)/(Ca_z*F*d) + (Ca0 - Ca)/tau_Ca nHVK' = (nHVK_inf - nHVK)/nHVK_tau @ xp=nk,yp=V,xlo=-1,xhi=1,ylo=-80,yhi=80,total=600,dt=.2,dtmin=1e-12 @ meth=gear tol=0.01 @ dtmax=5,dtmin=1e-10,bound=1000 @ autoxmin=-1,autoxmax=0.6,autoymin=-70,autoymax=20,parmin=-1,parmax=0.6,dsmax=0.1,ds=-0.0001 done