TITLE K-A channel from Beck Ficker and Heinemann (1992)
: M.Migliore 2001
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
celsius (degC)
gkabar= 0.01 (mho/cm2)
vhalfn=-73.1 (mV)
vl=-73.1 (mV)
vn=11 (mV)
kn=3
th=-55 (mV)
vhalfl=-73.1 (mV)
a0l=0.02 (/ms)
a0n=0.3 (/ms)
zetan=-1.5 (1)
zetal=2 (1)
gmn=0.7 (1)
gml=0.65 (1)
lmin=7.5 (mS)
nmin=0.5 (mS)
q10=3
ek
}
NEURON {
SUFFIX kadend USEION k READ ek WRITE ik
RANGE gkabar,gka
GLOBAL ninf,linf,taul,taun,lmin
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul
taun
gka
}
INITIAL {
rates(v)
n=ninf
l=linf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gkabar*n*l
ik = gka*(v-ek)
}
FUNCTION alpn(v(mV)) {
alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-22)/10)
if (v<=th) {ninf=0} else {ninf = (2*(v-th)^kn)/((vn-th)^kn+ (v-th)^kn)}
taun = betn(v)/(qt*a0n*(1+alpn(v)))
if (taun<nmin/qt) {taun=nmin/qt}
linf = 1/(1+ exp((vl-v)/-6.3))
taul = betl(v)/(qt*a0l*(1+alpl(v)))
if (taul<lmin/qt) {taul=lmin/qt}
}