//genesis /*************************** MS Model, Version 9.1 ********************* **************************** KaF.g ********************* Rebekah Evans updated 3/21/12 Kv4.2 ****************************************************************************** ******************************************************************************/ function make_KAf_channel //initial parameters for making tab channel float Erev = -0.09 int m_power = 2 //used in Wolf 2005 int h_power = 1 //Activation constants for alphas and betas (obtained by matching m2 to Tkatch et al., 2000 Figs 2c, and mtau to fig 2b) //units are mV, ms float mA_rate = 1.8 float mA_vhalf = -18 float mA_slope = -13 float mB_rate = 0.45 float mB_vhalf = 2 float mB_slope = 11 //Inactivation constants for alphas and betas obtained by matching Tkatch et al., 2000 Fig 3b, and creating a tau voltage dependence //which is consistent with their value for V=0 in figure 3c. //units are mV, ms float hA_rate = 0.105 float hA_vhalf = -121 float hA_slope = 22 float hB_rate = 0.065 float hB_vhalf = -55 float hB_slope = -11 //table filling parameters float xmin = -0.1 float xmax = 0.05 int xdivsFiner = 3000 int c = 0 float increment =1000*{{xmax}-{xmin}}/{xdivsFiner} float x = -100 str path = "KAf_channel" create tabchannel {path} call {path} TABCREATE X {xdivsFiner} {xmin} {xmax} call {path} TABCREATE Y {xdivsFiner} {xmin} {xmax} /*fills the tabchannel with values for minf, mtau, hinf and htau, *from the files. */ for (c = 0; c < {xdivsFiner} + 1; c = c + 1) float m_alpha = {sig_form {mA_rate} {mA_vhalf} {mA_slope} {x}} float m_beta = {sig_form {mB_rate} {mB_vhalf} {mB_slope} {x}} float h_alpha = {sig_form {hA_rate} {hA_vhalf} {hA_slope} {x}} float h_beta = {sig_form {hB_rate} {hB_vhalf} {hB_slope} {x}} /* 1e-3 converts from ms to sec. Tkactch does not specify recording temperature so room temperature is assumed*/ setfield {path} X_A->table[{c}] {{{1e-3/(m_alpha+m_beta)}}/{{qfactorkAf}}} setfield {path} X_B->table[{c}] {m_alpha/(m_alpha+m_beta)} setfield {path} Y_A->table[{c}] {{{1e-3/(h_alpha+h_beta)}}/{{qfactorkAf}}} setfield {path} Y_B->table[{c}] {h_alpha/(h_alpha+h_beta)} x = x + increment end /* Defines the powers of m and h in the Hodgkin-Huxley equation*/ setfield {path} Ek {Erev} Xpower {m_power} Ypower {h_power} tweaktau {path} X tweaktau {path} Y end