/**
* "FNS" (Firnet NeuroScience), ver.3.x
*				
* FNS is an event-driven Spiking Neural Network framework, oriented 
* to data-driven neural simulations.
*
* (c) 2020, Gianluca Susi, Emanuele Paracone, Mario Salerno, 
* Alessandro Cristini, Fernando Maestú.
*
* CITATION:
* When using FNS for scientific publications, cite us as follows:
*
* Gianluca Susi, Pilar Garcés, Alessandro Cristini, Emanuele Paracone, 
* Mario Salerno, Fernando Maestú, Ernesto Pereda (2020). 
* "FNS: an event-driven spiking neural network simulator based on the 
* LIFL neuron model". 
* Laboratory of Cognitive and Computational Neuroscience, UPM-UCM 
* Centre for Biomedical Technology, Technical University of Madrid; 
* University of Rome "Tor Vergata".   
* Paper under review.
*
* FNS is free software: you can redistribute it and/or modify it 
* under the terms of the GNU General Public License version 3 as 
* published by the Free Software Foundation.
*
* FNS is distributed in the hope that it will be useful, but WITHOUT 
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
* or FITNESS FOR A PARTICULAR PURPOSE. 
* See the GNU General Public License for more details.
* 
* You should have received a copy of the GNU General Public License 
* along with FNS. If not, see <http://www.gnu.org/licenses/>.
* 
* -----------------------------------------------------------
*  
* Website:   http://www.fnsneuralsimulator.org
* 
* Contacts:  fnsneuralsimulator (at) gmail.com
*	    gianluca.susi82 (at) gmail.com
*	    emanuele.paracone (at) gmail.com
*
*
* -----------------------------------------------------------
* -----------------------------------------------------------
**/

package spiking.controllers.node;

import org.apache.commons.lang3.builder.EqualsBuilder;
import org.apache.commons.lang3.builder.HashCodeBuilder;

import utils.tools.IntegerCouple;

public class NodeLink implements Comparable<NodeLink>{
  
  private Integer srcNodeId;
  private Integer dstNodeId;
  private Integer srcNeuronId;
  private Integer dstNeuronId;
  
  public NodeLink (Integer srcNodeId, Integer srcNeuronId, 
      Integer dstNodeId, Integer dstNeuronId){
    this.srcNodeId = srcNodeId;
    this.srcNeuronId = srcNeuronId;
    this.dstNodeId = dstNodeId;
    this.dstNeuronId = dstNeuronId;
  }
  
  @Override
  public String toString() {
    return "Node Link [src=" + srcNodeId +"-"+srcNeuronId+", dst=" + dstNodeId+"-"+dstNeuronId + "]";
  }

  @Override
  public boolean equals(Object obj) {
    if (obj == null) 
      return false; 
    if (obj == this)
      return true; 
    if (obj.getClass() != getClass()) 
      return false;
    
    NodeLink rhs = (NodeLink) obj;
    return new EqualsBuilder()
//        .appendSuper(super.equals(obj))
        .append(srcNodeId, rhs.srcNodeId)
        .append(srcNeuronId, rhs.srcNeuronId)
        .append(dstNodeId, rhs.dstNodeId)
        .append(dstNeuronId, rhs.dstNeuronId).isEquals();
  }

  @Override
  public int hashCode() {
    // you pick a hard-coded, randomly chosen, non-zero, odd number
       // ideally different for each class
       return new HashCodeBuilder(17, 37).append(7*dstNeuronId<<srcNodeId+srcNeuronId).append(srcNeuronId<<dstNodeId+3*dstNeuronId).toHashCode();    
  }
  
  @Override
  public int compareTo(NodeLink o) {
    if (this==o)
      return 0;
    int retval = srcNodeId.compareTo(o.getSrcNodeId());
    if (retval!=0)
      return retval;
    retval = srcNeuronId.compareTo(o.getSrcNeuronId());
    if (retval!=0)
      return retval;
    retval = dstNodeId.compareTo(o.getDstNodeId());
    if (retval!=0)
      return retval;
    retval = dstNeuronId.compareTo(o.getDstNeuronId());
    if (retval!=0)
      return retval;
    return retval;
  }

  public Integer getSrcNodeId() {
    return srcNodeId;
  }

  public Integer getDstNodeId() {
    return dstNodeId;
  }

  public Integer getSrcNeuronId() {
    return srcNeuronId;
  }

  public Integer getDstNeuronId() {
    return dstNeuronId;
  }


  
  
  

}