/**
* "FNS" (Firnet NeuroScience), ver.3.x
*				
* FNS is an event-driven Spiking Neural Network framework, oriented 
* to data-driven neural simulations.
*
* (c) 2020, Gianluca Susi, Emanuele Paracone, Mario Salerno, 
* Alessandro Cristini, Fernando Maestú.
*
* CITATION:
* When using FNS for scientific publications, cite us as follows:
*
* Gianluca Susi, Pilar Garcés, Alessandro Cristini, Emanuele Paracone, 
* Mario Salerno, Fernando Maestú, Ernesto Pereda (2020). 
* "FNS: an event-driven spiking neural network simulator based on the 
* LIFL neuron model". 
* Laboratory of Cognitive and Computational Neuroscience, UPM-UCM 
* Centre for Biomedical Technology, Technical University of Madrid; 
* University of Rome "Tor Vergata".   
* Paper under review.
*
* FNS is free software: you can redistribute it and/or modify it 
* under the terms of the GNU General Public License version 3 as 
* published by the Free Software Foundation.
*
* FNS is distributed in the hope that it will be useful, but WITHOUT 
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
* or FITNESS FOR A PARTICULAR PURPOSE. 
* See the GNU General Public License for more details.
* 
* You should have received a copy of the GNU General Public License 
* along with FNS. If not, see <http://www.gnu.org/licenses/>.
* 
* -----------------------------------------------------------
*  
* Website:   http://www.fnsneuralsimulator.org
* 
* Contacts:  fnsneuralsimulator (at) gmail.com
*	    gianluca.susi82 (at) gmail.com
*	    emanuele.paracone (at) gmail.com
*
*
* -----------------------------------------------------------
* -----------------------------------------------------------
**/

package spiking.node.external_inputs;

import spiking.node.Node;
import utils.tools.NiceQueue;
import utils.tools.NiceNode;

public class ExternalInput {
  
   public final static int POISSON = 0;
   public final static int CONSTANT = 1;
   public final static int NOISE = 2;
   private final static String TAG = "[External Input] ";
   private final static Boolean verbose = true;
   public final static Double EXTERNAL_AMPLITUDE_DEF_VALUE = 0.1;
   //the node which takes the inputs
   private Node n;
   //external input neuron number
   private Integer externalInputs;
   private Double externalInputsTimeOffset=0.1;
   private Integer fireDuration=5;                       //duration in ms
   private double timeStep=1;                            //step
   private int type;  
   private int externalSpikes = 0;
   private Double externalAmplitude = EXTERNAL_AMPLITUDE_DEF_VALUE;
   private Integer externalOutdegree; 
     
   public ExternalInput(
     Node n, 
     int type, 
     Double externalInputsTimeOffset, 
     int fireDuration, 
     Double externalAmplitude, 
     int externalOutdegree, 
     double timeStep){
     this.n=n;
     this.type=type;
     this.externalInputsTimeOffset=
         ((externalInputsTimeOffset!=null)&&
         (externalInputsTimeOffset>0))?
           externalInputsTimeOffset:
           this.externalInputsTimeOffset;
     this.fireDuration=fireDuration;
     this.timeStep=timeStep;
     this.externalAmplitude=externalAmplitude;
     this.externalOutdegree=externalOutdegree;
     externalInputs=n.getExternalInputs();
     //init();
   }
   
   //private void init(){
   //  println("external input init...");
   //  externalInputs=n.getExternalInputs();
   //  println("external input initialized.");
   //}
   
   
   public Double getAmplitudeValue(int extNeuron){
     return externalAmplitude;
   }

   public double getTimeStep(){
     return timeStep;
   }

   
   protected Integer getExternalInputsNum(){
     return externalInputs;
   }
   
   public int getExternalSpikesInQueue(){
     return externalSpikes;
   }
   
   public Integer getFireDuration(){
     return fireDuration;
   }
   
   public Integer getExternalOutdegree(){
     return externalOutdegree;
   }

   private void println(String s){
     if (verbose)
       System.out.println(TAG+s);
   }
   
   
   
}