COMMENT
Maciej T. Lazarewicz, mlazarew@seas.upenn.edu
ENDCOMMENT
NEURON {
SUFFIX cacurrent
USEION ca WRITE ica
RANGE gca, ica
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mS) = (millisiemens)
}
PARAMETER {
gca = 10 (mS/cm2)
eca = 80 (mV)
}
ASSIGNED {
ica (mA/cm2)
v (mV)
sinf (1)
taus (ms)
}
STATE { s }
INITIAL {
rates(v)
s = sinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
ica = (1e-3) * gca * s^2 * (v-eca)
}
DERIVATIVE states {
rates(v)
s' = (sinf-s)/taus
}
PROCEDURE rates(v(mV)) { LOCAL a,b
a = fun2(v, 5, 1.6, -1/0.072)
b = fun3(v, -8.9, 0.02, 5)
sinf = a/(a+b)
taus = 1.0/(a+b)
}
COMMENT
Maciej T. Lazarewicz, mlazarew@seas.upenn.edu
ENDCOMMENT
:-------------------------------------------------------------------
FUNCTION fun1(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
fun1 = A*exp((v-V0)/B)
}
FUNCTION fun2(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
fun2 = A/(exp((v-V0)/B)+1)
}
FUNCTION fun3(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
if(fabs((v-V0)/B)<1e-6) {
:if(v==V0) {
fun3 = A*B/1(mV) * (1- 0.5 * (v-V0)/B)
} else {
fun3 = A/1(mV)*(v-V0)/(exp((v-V0)/B)-1)
}
}
FUNCTION min(x,y) { if (x<=y){ min = x }else{ min = y } }