COMMENT
Maciej T. Lazarewicz, mlazarew@seas.upenn.edu
ENDCOMMENT
NEURON {
SUFFIX kahp
USEION k WRITE ik
USEION ca READ cai
RANGE gkbar, ik, qinf, tauq
}
UNITS {
(mollar) = (1/liter)
(mM) = (millimollar)
(mA) = (milliamp)
(mV) = (millivolt)
(mS) = (millisiemens)
}
PARAMETER {
gkbar = 0.8 (mS/cm2)
ek = -75 (mV)
}
ASSIGNED {
v (mV)
ik (mA/cm2)
cai (mM)
qinf (1)
tauq (ms)
}
STATE { q }
INITIAL {
rates(v)
q = qinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = (1e-3) * gkbar * q * (v-ek)
}
DERIVATIVE states {
rates(v)
q' = (qinf-q)/tauq
}
PROCEDURE rates(v(mV)) { LOCAL a,b
a = 0.01(/ms) * min(cai/500(mM),1)
b = 1(/ms)/1000
qinf = a/(a+b)
tauq = 1.0/(a+b)
}
COMMENT
Maciej T. Lazarewicz, mlazarew@seas.upenn.edu
ENDCOMMENT
:-------------------------------------------------------------------
FUNCTION fun1(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
fun1 = A*exp((v-V0)/B)
}
FUNCTION fun2(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
fun2 = A/(exp((v-V0)/B)+1)
}
FUNCTION fun3(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
if(fabs((v-V0)/B)<1e-6) {
:if(v==V0) {
fun3 = A*B/1(mV) * (1- 0.5 * (v-V0)/B)
} else {
fun3 = A/1(mV)*(v-V0)/(exp((v-V0)/B)-1)
}
}
FUNCTION min(x,y) { if (x<=y){ min = x }else{ min = y } }