COMMENT
Maciej T. Lazarewicz, mlazarew@seas.upenn.edu
ENDCOMMENT
NEURON {
SUFFIX kc
USEION k WRITE ik
USEION ca READ cai
RANGE gkbar, ik
}
UNITS {
(mollar) = (1/liter)
(mM) = (millimollar)
(mA) = (milliamp)
(mV) = (millivolt)
(mS) = (millisiemens)
}
PARAMETER {
gkbar = 15 (mS/cm2)
ek = -75 (mV)
}
ASSIGNED {
ik (mA/cm2)
v (mV)
cai (mM)
cinf (1)
tauc (ms)
}
STATE { c }
INITIAL {
rates(v)
c = cinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = (1e-3) * gkbar * min(cai/250(mM),1) * c * (v-ek)
}
DERIVATIVE states {
rates(v)
c' = (cinf-c)/tauc
}
PROCEDURE rates(v(mV)) { LOCAL a, b
if (v<=-10) {
a = 2(/ms) / 37.95 * ( exp( ( v + 50 ) / 11(mV) - ( v + 53.5 ) / 27(mV) ) )
b = 2(/ms) * exp( ( - v - 53.5 ) / 27(mV) ) - a
}else{
a = 2(/ms) * exp( ( - v - 53.5 ) / 27(mV) )
b = 0(/ms)
}
cinf = a/(a+b)
tauc = 1.0/(a+b)
}
COMMENT
Maciej T. Lazarewicz, mlazarew@seas.upenn.edu
ENDCOMMENT
:-------------------------------------------------------------------
FUNCTION fun1(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
fun1 = A*exp((v-V0)/B)
}
FUNCTION fun2(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
fun2 = A/(exp((v-V0)/B)+1)
}
FUNCTION fun3(v(mV),V0(mV),A(/ms),B(mV))(/ms) {
if(fabs((v-V0)/B)<1e-6) {
:if(v==V0) {
fun3 = A*B/1(mV) * (1- 0.5 * (v-V0)/B)
} else {
fun3 = A/1(mV)*(v-V0)/(exp((v-V0)/B)-1)
}
}
FUNCTION min(x,y) { if (x<=y){ min = x }else{ min = y } }