% To generate Figure 1A run the following MATLAB scripts:
%
% runIFscanTenFS.m
% readIFscanTenFS.m
% makeIFplots.m
%
initTime = 0.4;
% What random seeds did we use?
rsu = unique(randSeed);
figure(1), clf
figure(2), clf
for i = 1:length(rsu)
rs = rsu(i);
idx = find(randSeed == rs);
[cur, cidx] = sort(curAmp(idx));
clear freq
for j = 1:length(idx)
for k = 1:length(savedSpikeTimes{idx(j)})
freq(j,k) = length(find(savedSpikeTimes{idx(j)}{k} > initTime));
end
end
% F = freq/(length(savedSpikeTimes{idx(j)})*(maxTime(idx(j))-initTime));
F = freq/(maxTime(idx(j))-initTime);
% If you ran runTenIFscan.m then the first neuron is the standard neuron
figure(1)
plot(1e12*cur,F(cidx,:), 'Color', [1 1 1]*0.5, 'LineWidth', 2)
hold on
plot(1e12*cur,F(cidx,1),'k', 'LineWidth',2)
xlabel('Current (pA)')
ylabel('Frequency (Hz)')
figure(2)
curFiner = linspace(min(cur),max(cur),1000);
voltFiner = interp1(cur,F(cidx,:), curFiner,'cubic');
plot(1e12*curFiner,voltFiner,'Color',[1 1 1]*0.5)
hold on
plot(1e12*curFiner, voltFiner(:,1),'k')
xlabel('Current (pA)')
ylabel('Frequency (Hz)')
end
if(exist('randId'))
title(['randId = ' num2str(randId)])
saveas(gcf, ['FIGS/FS-IFplot-' num2str(randId)], 'fig')
else
figure(1)
saveas(gcf, 'FIGS/FS-IFplot.fig', 'fig')
saveas(gcf, 'FIGS/FS-IFplot.eps', 'psc2')
end