% To generate Figure 5A run the following MATLAB scripts:
%
% runTwoFSwithGJforIFplots.m
% readIFSscanFSpair.m
% makeIFplots.m
%
initTime = 0.4;
figure(1), clf
figure(2), clf
for i = 1 %length(rsu)
%rs = rsu(i);
%idx = find(randSeed == rs);
idx = 1:fileCtr;
[cur, cidx] = sort(curAmp(idx));
clear freq
for j = 1:length(idx)
for k = 1:length(savedSpikeTimes{idx(j)})
freq(j,k) = length(find(savedSpikeTimes{idx(j)}{k} > initTime));
end
end
% F = freq/(length(savedSpikeTimes{idx(j)})*(maxTime(idx(j))-initTime));
F = freq/(maxTime(idx(j))-initTime);
% If you ran runTenIFscan.m then the first neuron is the standard neuron
figure(1)
% pA = plot(1e12*cur,F(cidx,1), 'k-', 'LineWidth', 2); % Ref
% hold on
pB = plot(1e12*cur,F(cidx,2), 'k', 'LineWidth', 2); % GJ to similar act
hold on
pC = plot(1e12*cur,F(cidx,4), 'k--', 'LineWidth', 2); % GJ to half act
pD = plot(1e12*cur,F(cidx,6), 'r--', 'LineWidth', 2); % GJ to no act
pE = plot(1e12*cur,F(cidx,8), 'r-', 'LineWidth', 2); % GJ to hyper act
%
% legend([pA(1) pB(1) pC(1) pD(1) pE(1)], ...
% 'Unconnected reference', ...
% 'Coupled to identical', ...
% 'Coupled to half activated', ...
% 'Coupled to no activation', ...
% 'Coupled to hyperpolarised');
legend([pB(1) pC(1) pD(1) pE(1)], ...
'Identical', ...
'Half current', ...
'No current', ...
'Hyperpolarising', ...
'Location', 'Best');
box off
% plot(1e12*cur,F(cidx,:), 'Color', [1 1 1]*0.5, 'LineWidth', 2)
% hold on
% plot(1e12*cur,F(cidx,1),'k', 'LineWidth',2)
xlabel('Current (pA)','fontsize',24)
ylabel('Frequency (Hz)','fontsize',24)
set(gca,'FontSize',20)
title('Effect of coupled neighbours input','fontsize',24)
figure(2)
curFiner = linspace(min(cur),max(cur),1000);
voltFiner = interp1(cur,F(cidx,:), curFiner,'cubic');
plot(1e12*curFiner,voltFiner,'Color',[1 1 1]*0.5)
hold on
plot(1e12*curFiner, voltFiner(:,1),'k')
xlabel('Current (pA)')
ylabel('Frequency (Hz)')
end
figure(1)
saveas(gcf, 'FIGS/FS-IFplot-effect-of-neighbour-input.fig', 'fig')