TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
celsius
v (mV)
gkabar=.008 (mho/cm2)
vhalfn=-1 (mV)
vhalfl=-56 (mV)
a0l=0.05 (/ms)
a0n=.1 (/ms)
zetan=-1.8 (1)
zetal=3 (1)
gmn=0.39 (1)
gml=1 (1)
lmin=2 (mS)
nmin=0.2 (mS)
pw=-1 (1)
tq=-40
qq=5
q10=5
qtl=1
ek
}
NEURON {
SUFFIX kad
USEION k READ ek WRITE ik
RANGE gkabar,gka,i
GLOBAL ninf,linf,taul,taun,lmin
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul
taun
gka
i
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gkabar*n*l
ik = gka*(v-ek)
i=ik
}
INITIAL {
rates(v)
n=ninf
l=linf
}
FUNCTION alpn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states {
rates(v)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-24)/10)
a = alpn(v)
ninf = 1/(1 + a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmin) {taun=nmin}
a = alpl(v)
linf = 1/(1+ a)
taul = 0.26*(v+50)/qtl
if (taul<lmin/qtl) {taul=lmin/qtl}
}