: Ca channels (T,N,L-type)
: Aradi and Holmes (1999)
NEURON {
SUFFIX Ca
USEION ca WRITE ica
RANGE gtcabar, gncabar, glcabar, gtca, gnca, glca, e_ca
GLOBAL ca0, cao
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(mV) = (millivolt)
(mA) = (milliamp)
(S) = (siemens)
B = .26 (mM-cm2/mA-ms)
F = (faraday) (coulomb)
R = (k-mole) (joule/degC)
TEMP = 25 (degC)
}
PARAMETER {
ca0 = .00007 (mM) : initial calcium concentration inside
cao = 2 (mM) : calcium concentration outside
tau = 9 (ms)
gtcabar = .01 (S/cm2) : maximum permeability
gncabar = .01 (S/cm2)
glcabar = .01 (S/cm2)
}
ASSIGNED {
v (mV)
e_ca (mV)
ica (mA/cm2)
gtca (S/cm2)
gnca (S/cm2)
glca (S/cm2)
i (nA)
}
STATE { ca_i (mM) a b c d e}
BREAKPOINT {
SOLVE state METHOD cnexp
e_ca = (1000)*(TEMP+273.15)*R/(2*F)*log(cao/ca_i)
gtca = gtcabar*a*a*b
gnca = gncabar*c*c*d
glca = glcabar*e*e
ica = (gtca+gnca+glca)*(v - e_ca) : only L type
}
DERIVATIVE state { : exact when v held constant; integrates over dt step
ca_i' = -B*ica-(ca_i-ca0)/tau
a' = alphaa(v)*(1-a)-betaa(v)*a
b' = alphab(v)*(1-b)-betab(v)*b
c' = alphac(v)*(1-c)-betac(v)*c
d' = alphad(v)*(1-d)-betad(v)*d
e' = alphae(v)*(1-e)-betae(v)*e
}
INITIAL {
ca_i = ca0
a = alphaa(v)/(alphaa(v)+betaa(v))
b = alphab(v)/(alphab(v)+betab(v))
c = alphac(v)/(alphac(v)+betac(v))
d = alphad(v)/(alphad(v)+betad(v))
e = alphae(v)/(alphae(v)+betae(v))
}
FUNCTION alphaa(v (mV)) (/ms) {
alphaa = f(2,0.1,v,19.26)
}
FUNCTION betaa(v (mV)) (/ms) {
betaa = exponential(0.009,-0.045393,v,0)
}
FUNCTION alphab(v (mV)) (/ms) {
alphab = exponential(1e-6,-0.061501,v,0)
}
FUNCTION betab(v (mV)) (/ms) {
betab = logistic(1,-0.1,v,29.79)
}
FUNCTION alphac(v (mV)) (/ms) {
alphac = f(1.9,0.1,v,19.88)
}
FUNCTION betac(v (mV)) (/ms) {
betac = exponential(0.046,-0.048239,v,0)
}
FUNCTION alphad(v (mV)) (/ms) {
alphad = exponential(1.6e-4,-0.020661,v,0)
}
FUNCTION betad(v (mV)) (/ms) {
betad = logistic(1,-0.1,v,39)
}
FUNCTION alphae(v (mV)) (/ms) {
alphae = f(156.9,0.1,v,81.5)
}
FUNCTION betae(v (mV)) (/ms) {
betae = exponential(0.29,-0.092081,v,0)
}
FUNCTION f(A, k, v (mV), D) (/ms) {
LOCAL x
UNITSOFF
x = k*(v-D)
if (fabs(x) > 1e-6) {
f = A*x/(1-exp(-x))
}else{
f = A/(1-0.5*x)
}
UNITSON
}
FUNCTION logistic(A, k, v (mV), D) (/ms) {
UNITSOFF
logistic = A/(1+exp(k*(v-D)))
UNITSON
}
FUNCTION exponential(A, k, v (mV), D) (/ms) {
UNITSOFF
exponential = A*exp(k*(v-D))
UNITSON
}