function [ total_reward,i,Q,Model,last_actions,last_states,last_reward,last_Q,lastMaxK,lastMaxVar,lastDreward,lastMA_noise_n,last_maxD,last_meanD ] =...
Episode_DP( maxsteps,Environment,start,parameters)
QTablePerm_t.mean=zeros(Environment.Num_States,Environment.Num_Actions);
QTablePerm_t.time=zeros(Environment.Num_States,Environment.Num_Actions);
QTablePerm_t.var=1.5*eye(Environment.Num_States*Environment.Num_Actions);
QTablePerm=QTablePerm_t;
last_actions=zeros(1,maxsteps);
last_states=zeros(1,maxsteps);
last_reward=zeros(1,maxsteps);
lastMaxK=zeros(1,maxsteps);
lastMaxVar=lastMaxK;
lastDreward=lastMaxK;
lastMA_noise_n=lastMaxK;
last_maxD=lastMaxK;
last_meanD=lastMaxK;
last_Q=zeros(maxsteps,Environment.Num_States,Environment.Num_Actions);
priorCounts=4;
Model =CreateModel(Environment,priorCounts,parameters.knownTransitions);
currentState = start;
total_reward = 0;
reset=1;
% selects an action using the epsilon greedy selection strategy
%a = e_greedy_selection(Q,s,epsilon);
stateActionVisitCounts=zeros(Environment.Num_States,Environment.Num_Actions);
stateActionVisitCounts2=stateActionVisitCounts;
QTablePerm = DP( parameters,Environment);
for i=1:maxsteps
%run internal simulations
%[QTablePerm,~]=runInternalSimulation(QTablePerm,currentState,Model,MBParameters,reset);reset=0;
%Qtable_Integrated=QTablePerm;
%select action a
action =selectActionSimDyna(currentState,parameters, QTablePerm,stateActionVisitCounts,Model.nodenames,Model.actionName);
%do the selected action and get the next car state
[reward, new_state] = DoAction( action , currentState, Environment );
%QTablePerm=Qtable_Integrated;
Model=updateModel(reward, new_state,action , currentState,Model,0.995,parameters.knownTransitions);
%display('actualInteraction')
%[QTablePerm,maxK,maxVar,dreward,MA_noise_n]=updateQTablePerm(QTablePerm,reward, new_state,action , currentState, parameters,reset);reset=0;
%reset=0;
%[QTablePerm,maxdiffQp,meanQp]=internalReplay(QTablePerm,Model,parameters,stateActionVisitCounts2,reset);reset=0;
last_actions(i)=action;
last_states(i)=currentState;
last_reward(i)=reward;
%lastMaxK(i)=maxK;
%lastMaxVar(i)=maxVar;
%lastDreward(i)=max(abs(dreward));
%lastMA_noise_n(i)=MA_noise_n;
% last_maxD(i)=maxdiffQp;
% last_meanD(i)=meanQp;
last_Q(i,:,:)=QTablePerm;
Q=QTablePerm;
currentState=new_state;
end