function [ total_reward,i,Q,Model,last_actions,last_states,last_reward,last_Q,lastMaxK,lastMaxVar,lastDreward,lastMA_noise_n,last_maxD,last_meanD ] =...
Episode_Dim_UCT_UCRL( maxsteps, Environment,start,parameters)
% Episode do one episode of the mountain car with sarsa learning
% maxstepts: the maximum number of steps per episode
% Q: the current QTable
% alpha: the current learning rate
% gamma: the current discount factor
% epsilon: probablity of a random action
% statelist: the list of states
% actionlist: the list of actions
% Maze
% based on the code of:
% Jose Antonio Martin H. <jamartinh@fdi.ucm.es>
%
%
QTablePerm_t.mean=zeros(Environment.Num_States,Environment.Num_Actions);
QTablePerm_t.time=zeros(Environment.Num_States,Environment.Num_Actions);
QTablePerm_t.var=1.5*eye(Environment.Num_States*Environment.Num_Actions);
QTablePerm=QTablePerm_t;
last_actions=zeros(1,maxsteps);
last_states=zeros(1,maxsteps);
last_reward=zeros(1,maxsteps);
lastMaxK=zeros(1,maxsteps);
lastMaxVar=lastMaxK;
lastDreward=lastMaxK;
lastMA_noise_n=lastMaxK;
last_maxD=lastMaxK;
last_meanD=lastMaxK;
last_Q=zeros(maxsteps,Environment.Num_States,Environment.Num_Actions);
Model =CreateModel(Environment,parameters,4,parameters.knownTransitions);
currentState = start;
total_reward = 0;
reset=1;
% selects an action using the epsilon greedy selection strategy
%a = e_greedy_selection(Q,s,epsilon);
stateActionVisitCounts=zeros(Model.Num_States,Model.Num_Actions);
stateActionVisitCounts2=stateActionVisitCounts;
for i=1:maxsteps
%run internal simulations
if parameters.runInternalSimulation
[QTablePerm,~]=runInternalSimulation(QTablePerm,currentState,Model,parameters,reset);
reset=0;
end
%Qtable_Integrated=QTablePerm;
%select action a
action=actionSelection(currentState,Model,parameters, QTablePerm,stateActionVisitCounts);
%do the selected action and get the next car state
[reward, new_state] = DoAction( action , currentState, Environment );
%QTablePerm=Qtable_Integrated;
if parameters.updateModel
decay=0.995;
Model=updateModel(reward, new_state,action , currentState,Model,decay,parameters.knownTransitions);
end
%display('actualInteraction')
if parameters.updateQTablePerm
[QTablePerm,maxK,maxVar,dreward,MA_noise_n]=updateQTablePerm(QTablePerm,reward, new_state,action , currentState, parameters,reset);
reset=0;
end
if parameters.internalReplay
[QTablePerm,maxdiffQp,meanQp]=internalReplay(QTablePerm,Model,parameters,stateActionVisitCounts2,reset);
reset=0;
end
last_actions(i)=action;
last_states(i)=currentState;
last_reward(i)=reward;
%lastMaxK(i)=maxK;
%lastMaxVar(i)=maxVar;
%lastDreward(i)=max(abs(dreward));
%lastMA_noise_n(i)=MA_noise_n;
% last_maxD(i)=maxdiffQp;
% last_meanD(i)=meanQp;
last_Q(i,:,:)=QTablePerm.mean;
currentState=new_state;
Q=QTablePerm.mean;
end