function [ total_reward,i,Q,Model,last_actions,last_states,last_reward,last_Q,lastMaxK,lastMaxVar,lastDreward,lastMA_noise_n ] = Episode_FWBW_NoLearning( maxsteps, alpha, gamma,epsilon,MFParameters,grafic,Environment,start,p_steps )
% Episode do one episode of the mountain car with sarsa learning
% maxstepts: the maximum number of steps per episode
% Q: the current QTable
% alpha: the current learning rate
% gamma: the current discount factor
% epsilon: probablity of a random action
% statelist: the list of states
% actionlist: the list of actions
% Maze
% based on the code of:
% Jose Antonio Martin H. <jamartinh@fdi.ucm.es>
%
%
MBParameters=struct('alpha_MB',alpha,...
'StoppingPathThreshMB',1e-6,...
'stoppingThreshMB',20,...
'StoppingPathLengthMB',6,...
'MaxItrMB',10,...
'StopSimMB',10,...
'SelectActionSimMB','DYNA',...
'knownTransitions',1,...
'stopOnUncertaintyVal',1,...
'gamma_MB',MFParameters.gamma_MF,...
'lambda_MB',MFParameters.lambda_MF,...,
'sigma_square_noise_external',0.000001,...
'noiseVal',0.000001,...
'noiceVar',0.000001);
MBReplayParameters = struct(...
'P_starting_point_high_R',0.1,...
'P_starting_point_Low_R',0.1,...
'P_starting_point_recent_change',0.1,...
'restart_sweep_Prob',0.3,... %'frequency',2,...
'sweeps',4,...
'sweepsDepth',4,...
'stepsTotal',8,...
'P_update_After_Reward',2);
MBParameters=setstructfields(MBParameters,MFParameters);
MBReplayParameters=setstructfields(MBReplayParameters,MBParameters);
QTablePerm_t.mean=zeros(Environment.Num_States,Environment.Num_Actions);
QTablePerm_t.time=zeros(Environment.Num_States,Environment.Num_Actions);
QTablePerm_t.var=1.5*eye(Environment.Num_States*Environment.Num_Actions);
QTablePerm=QTablePerm_t;
last_actions=zeros(1,maxsteps);
last_states=zeros(1,maxsteps);
last_reward=zeros(1,maxsteps);
lastMaxK=zeros(1,maxsteps);
lastMaxVar=lastMaxK;
lastDreward=lastMaxK;
lastMA_noise_n=lastMaxK;
last_Q=zeros(maxsteps,Environment.Num_States,Environment.Num_Actions);
Model =CreateModel(Environment,MBParameters,4);
currentState = start;
total_reward = 0;
% selects an action using the epsilon greedy selection strategy
%a = e_greedy_selection(Q,s,epsilon);
stateActionVisitCounts=zeros(Environment.Num_States,Environment.Num_Actions);
for i=1:maxsteps
%run internal simulations
[Qtable_Integrated,~]=runInternalSimulation(QTablePerm,currentState,Model,Environment,MBParameters,1);
%Qtable_Integrated=QTablePerm;
%select action a
action=actionSelection(currentState,Model,MBParameters, Qtable_Integrated,Environment,stateActionVisitCounts);
%do the selected action and get the next car state
[reward, new_state] = DoAction( action , currentState, Environment );
QTablePerm=Qtable_Integrated;
%Model=updateModel(reward, new_state,action , currentState,Model,alpha_model);
[QTablePerm,maxK,maxVar,dreward,MA_noise_n]=updateQTablePerm(Qtable_Integrated,reward, new_state,action , currentState, MBParameters,0);
QTablePerm=internalReplay(QTablePerm,Model,Environment,MBReplayParameters);
last_actions(i)=action;
last_states(i)=currentState;
last_reward(i)=reward;
%lastMaxK(i)=maxK;
%lastMaxVar(i)=maxVar;
%lastDreward(i)=max(abs(dreward));
%lastMA_noise_n(i)=MA_noise_n;
last_Q(i,:,:)=QTablePerm.mean;
currentState=new_state;
Q=QTablePerm.mean;
end