// tabchannel indices float tab_xmin = -0.10 float tab_xmax = 0.05 int tab_xdivs = 149 float cai_min = 1.0 float cai_max = 300 // only used for proto channels float GNa = 1 float GCa = 1 float GK = 1 float GH = 1 float ENa = 0.050 float ECa = 0.125 float EK = -0.09 float EH = -0.035 float Temp = 37 // the temperature of the model float I_inj = -700e-12 str inj_label = "h700pA" float Q10 = 2.3 float t_sim = 32 // the temperature at which rate constants were obtained // the factor for converting time constants (not rate constants) float Temp_corr_factor = {1 / (Q10**{({Temp} - {t_sim}) / 10})} //Base H-current conductances before distribution float GH_s = 0.15 float GH_d = 0.15 //Ca-pool parameters float B = 5.2e4 float CaTau_s = {100.0e-3 * Temp_corr_factor} float CaTau_d = {20.0e-3 * Temp_corr_factor} //Conductance scaling parameters float DNaP = 1.0 float DKC = 0.30 float DKM = 0.56 // Comment by Reinoud Maex, June 2007 // The units are a bit strange; the values are assigned without scaling in L5P_comp.g // Because the prototype compartments there all have PI m^2 as surface area, it is better // to divide here by the same factor to obtain Siemens over square meters as units (and to // multiply by surface area in L5P_comps). //somatic conductances float GNaF_s = 4800 / {PI} float GNaP_s = 0.0032 * {GNaF_s} * {DNaP} // already divided by {PI} float GKDr_s = 1250 / {PI} float GKA_s = 300 / {PI} float GKC_s = 75 * {DKC} / {PI} // / {Temp_corr_factor} float GKAHP_s = 1.0 / {PI} float GK2_s = 1.0 / {PI} float GKM_s = 50.0 * {DKM} / {PI} float GCaL_s = 5.0 / {PI} / {Temp_corr_factor} float GCaT_s = 1.0 / {PI} / {Temp_corr_factor} //Apical shaft float GNaF_shaft = 350 / {PI} float GKA_shaft = 300.0 / {PI} float GNaP_shaft = 0.0032 * {GNaF_shaft} * {DNaP} // already divided by {PI} float GKDr_shaft = 350 / {PI} float GKC_shaft = 75 * {DKC} / {PI} // / {Temp_corr_factor} float GKAHP_shaft = 1.0 / {PI} float GK2_shaft = 1.0 / {PI} float GKM_shaft = 50.0 * {DKM} / {PI} float GCaL_shaft = 3.0 / {PI} / {Temp_corr_factor} float GCaT_shaft = 1.0 / {PI} / {Temp_corr_factor} //basal dendritic conductances float GNaF_bd = 350 / {PI} float GNaP_bd = 0.0032 * {GNaF_bd} * {DNaP} // already divided by {PI} float GKDr_bd = 350 / {PI} float GKA_bd = 20.0 / {PI} float GKC_bd = 75 * {DKC} / {PI} // / {Temp_corr_factor} float GKAHP_bd = 1.0 / {PI} float GK2_bd = 1.0 / {PI} float GKM_bd = 50.0 * {DKM} / {PI} float GCaL_bd = 3.0 / {PI} / {Temp_corr_factor} float GCaT_bd = 1.0 / {PI} / {Temp_corr_factor} //proximal apical dendritic conductances float GNaF_pad = 350 / {PI} float GNaP_pad = 0.0032 * {GNaF_pad} * {DNaP} // already divided by {PI} float GKDr_pad = 350 / {PI} float GKA_pad = 20.0 / {PI} float GKC_pad = 75 * {DKC} / {PI} // / {Temp_corr_factor} float GKAHP_pad = 1.0 / {PI} float GK2_pad = 1.0 / {PI} float GKM_pad = 50.0 * {DKM} / {PI} float GCaL_pad = 3.0 / {PI} / {Temp_corr_factor} float GCaT_pad = 1.0 / {PI} / {Temp_corr_factor} //medial apical dendritic conductances float GNaF_mad = 350 / {PI} float GNaP_mad = 0.0032 * {GNaF_mad} * {DNaP} // already divided by {PI} float GKDr_mad = 350 / {PI} float GKA_mad = 20.0 / {PI} float GKC_mad = 75 * {DKC} / {PI} // / {Temp_corr_factor} float GKAHP_mad = 1.0 / {PI} float GK2_mad = 1.0 / {PI} float GKM_mad = 43.0 * {DKM} / {PI} float GCaL_mad = 3.0 / {PI} / {Temp_corr_factor} float GCaT_mad = 1.0 / {PI} / {Temp_corr_factor} //distal conductances float GNaF_dd = 62.5 / {PI} float GNaP_dd = 0.0032 * {GNaF_dd} * {DNaP} // already divided by {PI} float GKDr_dd = 0.0 / {PI} float GKA_dd = 20 / {PI} float GKC_dd = 0 / {PI} // / {Temp_corr_factor} float GKAHP_dd = 1.0 / {PI} float GK2_dd = 1.0 / {PI} float GKM_dd = 9.25 / {PI} //float GCaL_dd = 15.0 / {PI} float GCaL_dd = 15.0 / {PI} / {Temp_corr_factor} float GCaT_dd = 1.0 / {PI} / {Temp_corr_factor} // axonal conductances, from Granule cell model and axon-junction paper float scaling_f = 314.15 / 2012.67 // surface soma over surface full Gabbiani model, // scaling needed because active channels only on soma in Gabbiani model float GInNa_a = 2.5 \ // correction for 10 mV shift of (in-)activation rates * 2 \ // correction for 37 deg. Celsius * scaling_f \ // conversion to single compartment * 10 \ // conversion to SI units (S/m^2) * 70 // the Gabbiani value float GKDr_a = 1.5 * 2 * scaling_f * 10 * 19 /* preset constants */ // Ek value used for the leak conductance float EREST_ACT = -0.0650 // !!Change!!Ek value used for the RESET float RESET_ACT = -0.0650 float ELEAK = -0.07 // -0.065 // -0.07 // -0.0650 /* cable parameters */ float CM = 0.01 float RMs = 3.0300 float RA = 1.0 // CAVE : the values of CM, RMs and RA are overwritten by the cell // description file //Synaptic parameters //float G_Glu = -0.75e-8 //float Glu_tau1 = 5.0e-3 //float Glu_tau2 = 30.0e-3 //New synaptic parameters copied from Purkinje cell model //for GABAA and AMPA channels float E_GABA = -0.08 // -0.07 // -0.080 // CAVE was -0.07 in granule cell model float G_GABA = 70.0 // this value is reset in L5P_synchan.g float GB_GABA = 20.0 float GB_GABAs = 20.0 float G_GABAm, G_GABAs float E_AMPA = 0.000 float G_par_syn = 750.0 // this density gives on PC spines a peak conductance of 1.3 nS //New synaptic parameters copied from granule cell model //for NMDA and GABAB channels float E_NMDA = 0.0 float G_NMDA = 1200.0e-12 / 2012.67e-12 // the Gabbiani value expressed as conductance density float E_GABAB = -0.070 float G_GABAB = 1.0 float GNMDAs = G_NMDA float G_GABABs = G_GABAB // synaptic connection parameters float E_fibre_rate = 5 // spikes per second float I_fibre_rate = 5 // spikes per second float weight_AMPA_synapse = 1.0 float weight_GABA_synapse = 1.0 float weight_distribution = 0.0 float E_fibre_conduction_velocity = 1.0 // meter per second float I_fibre_conduction_velocity = 1.0 // meter per second float delay_distribution = 0.002