TITLE hh_Cp_scaled.mod squid sodium, potassium, and leak channels
COMMENT
This is the original Hodgkin-Huxley treatment for the set of sodium,
potassium, and leakage channels found in the squid giant axon membrane.
("A quantitative description of membrane current and its application
conduction and excitation in nerve" J.Physiol. (Lond.) 117:500-544 (1952).)
Membrane voltage is in absolute mV and has been reversed in polarity
from the original HH convention and shifted to reflect a resting potential
of -65 mV.
Remember to set celsius=6.3 (or whatever) in your HOC file.
See squid.hoc for an example of a simulation using this model.
SW Jaslove 6 March, 1992
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
? interface
NEURON {
SUFFIX hh_Cp_scaled
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE gnabar, gkbar, gl, el, gna, gk
GLOBAL minf, ninf, mtau, ntau
}
PARAMETER {
gnabar = .0 (S/cm2) <0,1e9>
gkbar = 0 (S/cm2) <0,1e9>
gl = 0 (S/cm2) <0,1e9>
el = -54.3 (mV)
}
STATE {
m n
}
ASSIGNED {
v (mV)
celsius (degC)
ena (mV)
ek (mV)
gna (S/cm2)
gk (S/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
minf ninf
mtau (ms) ntau (ms)
}
LOCAL mexp, nexp
? currents
BREAKPOINT {
SOLVE states METHOD cnexp
gna = gnabar*m*m*m
ina = gna*(v - ena)
gk = gkbar*n*n*n*n
ik = gk*(v - ek)
il = gl*(v - el)
}
INITIAL {
rates(v)
m = minf
n = ninf
}
? states
DERIVATIVE states {
rates(v)
m' = (minf-m)/mtau
n' = (ninf-n)/ntau
}
LOCAL q10
? rates
PROCEDURE rates(v(mV)) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL alpha, beta, sum
TABLE minf, mtau, ninf, ntau DEPEND celsius FROM -100 TO 100 WITH 200
UNITSOFF
q10 = 3^((celsius - 23)/10)
:"m" sodium activation system
alpha = -.182 * vtrap(-(v+55),6)
beta = -.124 * vtrap((v+55),6)
sum = alpha + beta
mtau = 0.25/(q10*sum)
minf = alpha/sum
:"n" potassium activation system
alpha = .01*vtrap(-(v+55),10)
beta = .125*exp(-(v+65)/80)
sum = alpha + beta
ntau = 1/(q10*sum)
ninf = alpha/sum
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = -y*(1 - x/y/2)
}else{
vtrap = x/(1 - exp(x/y))
}
}
UNITSON