#Simulation of pituitary GH(3) cells, firing of action potentials with three slow variable #IK(erg) was incorporated. gkatp channels were regulated. # Wu SN and Chang HD, Diethyl pyrocarbonate, a histidine-modifying agent, # directly stimulate activity of ATP-sensitive potassium channels in pituitary GH(3) cells. # Biochem Pharmacol 2005 Dec 19; [Epub ahead of print]. #units: V=mV; t=ms; g=pS; I=fA #Reference: Bertram and Sherman. #Calcium-based model for pituitary GH3 cells # #Ica- calcium current #Ik- delayed rectifier K+ current #Ik(Ca)- Ca2+ dependent K+ current #Ik(ATP)- nucleotide-sensitive K+ current #Iir- erg-like K+ current #c - cytosolic free Ca2+ concentration #cer - ER Ca2+ concentration #initial conditions init v=-60.0, c=0.10, n=0.01, cer=100, a=0.46, nIR=0.008, rIR=0.282 #parameters par gca=1000, gkca=900, gk=1400, gir=5 par vca=50, vk=-75, vir=-75, cm=5300 par taun=16, alpha=4.5e-6 par fcyt=0.01, kpmca=0.2, kd=0.3 par vn=-16, vm=-20, sn=5, sm=12 par kserca=0.4, dact=0.35, dinact=0.4 par fer=0.01, pleak=0.0005, dip3=0.5, vcytver=5 par ip3=0, sa=0.1, r=0.14 taua=300000 par tstim=3e4 gkatp=if(t<tstim)then(500)else(530) # Iir parameters alphaIRn(v) = 0.09/(1+exp(0.11*(v+100))) betaIRn(v) = 0.00035*exp(0.07*(v+25)) nIRinf(v) = 1/(1+betaIRn(v)/alphaIRn(v)) tauIRn(v) = 1/(alphaIRn(v) + betaIRn(v)) alphaIRr(v) = 30/(1+exp(0.04*(v+230))) betaIRr(v) = 0.15/(1+exp(-0.05*(v+120))) rIRinf(v) = 1/(1+betaIRr(v)/alphaIRr(v)) tauIRr(v) = 1/(alphaIRr(v) + betaIRr(v)) #Iir activation and inactivation functions nIR' = (nIRinf(v) - nIR)/tauIRn(v) rIR' = (rIRinf(v) - rIR)/tauIRr(v) # ionic currents ica(v)=gca*minf(v)*(v-vca) ik(v)=gk*n*(v-vk) ikca(v)=gkca*w*(v-vk) ikatp(v)=gkatp*a*(v-vk) iir(v)=gir*nIR*rIR*(v-vir) #activation functions minf(v)=1.0/(1.0+exp((vm-v)/sm)) ninf(v)=1.0/(1.0+exp((vn-v)/sn)) ainf(c)=1.0/(1.0+exp((r-c)/sa)) #fraction of K(Ca) channels activated by cytosolic Ca2+ w=c^5/(c^5+kd^5) #flux of Ca2+ through the membrane jmem=-(alpha*Ica(v)+kpmca*c) #Ca2+ influx into the ER via SERCA jserca=kserca*c #efflux out of the ER has two components # 1. Ca2+ leak is proportional to gradient between Ca2+ and ER jleak=pleak*(cer-c) # 2. Ca2+ efflux through the IP3R jip3=oinf*(cer-c) #fraction of open channels oinf=(c/(dact+c))*(ip3/(dip3+ip3))*(dinact/(dinact+c)) #net Ca2+ efflux from the ER jer=jleak+jip3-jserca #differential equations v'=-(ica(v)+ik(v)+ikca(v)+ikatp(v)+iir(v))/cm n'=(ninf(v)-n)/taun c'=fcyt*(jmem+jer) cer'=-fer*(vcytver)*jer a'=(ainf(c)-a)/taua aux tsec=t/1000.0 @ meth=cvode, dtmax=1, dt=2, total=8e4, maxstor=80000 @ bounds=1000, xp=tsec, yp=v, toler=1.0e-7, atoler=1.0e-7 @ xlo=0, xhi=80, ylo=-80, yhi=5 done