TITLE Sensory Axon Node channels

: 06/16
: Jessica Gaines
:
: Modification of channel properties
:
: 04/15
: Lane Heyboer
:
: Fast K+ current
:
: 2/02
: Cameron C. McIntyre
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents 
: responsible for nodal action potential
: Iterative equations H-H notation rest = -80 mV
:
: This model is described in detail in:
: 
: Gaines JS, Finn KE, Slopsema JP, Heyboer LA, Polasek KH. A Model of 
: Motor and Sensory Axon Activation in the Median Nerve Using Surface 
: Electrical Stimulation. Journal of Computational Neuroscience, 2018.
:
: McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of
: mammalian nerve fibers: influence of afterpotentials on the recovery
: cycle. Journal of Neurophysiology 87:995-1006, 2002.

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX node_sensory
	NONSPECIFIC_CURRENT ina
	NONSPECIFIC_CURRENT inap
	NONSPECIFIC_CURRENT ik
	NONSPECIFIC_CURRENT il
	NONSPECIFIC_CURRENT ikf
	RANGE gnapbar, gnabar, gkbar, gl, gkf, ena, ek, el, ekf
	RANGE mp_inf, m_inf, h_inf, s_inf, n_inf
	RANGE tau_mp, tau_m, tau_h, tau_s, tau_n
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {

    : channel conductances
	gnapbar = 0.01	(mho/cm2)
	gnabar	= 3.0	(mho/cm2)
	gkbar   = 0.04106 	(mho/cm2)
	gl	= 0.006005 (mho/cm2)
	gkf	= 0.02737	(mho/cm2)

    : reversal potentials
	ena     = 50.0  (mV)
	ek      = -90.0 (mV)
	el	= -90.0 (mV)
	ekf	= -90.0 (mV)

    : variables read in from .hoc file
	celsius		(degC)
	dt              (ms)
	v               (mV)
	vtraub=-80

    : parameters determining rate constants

    : persistent Na+
	ampA = 0.00957
	ampB = 26.852
	ampC = 10.2
	bmpA = 0.0002401
	bmpB = 33.8333
	bmpC = 10

    : fast Na+
	amA = 1.77753
	amB = 20.1795
	amC = 10.3
	bmA = 0.0823
	bmB = 25.4746
	bmC = 9.16
	ahA = 0.075286
	ahB = 112.7124
	ahC = 8.3910
	bhA = 2.8083
	bhB = 30.5435
	bhC = 10.2263

    : slow K+
	asA = 0.3
	asB = -27
	asC = -5
	bsA = 0.03
	bsB = 10
	bsC = -1

    : fast K+
	anA = 0.0462
	anB = -83.2
	anC = 1.1
	bnA = 0.0824
	bnB = -66
	bnC = 10.5
}

STATE {
	mp m h s n
}

ASSIGNED {
	inap    (mA/cm2)
	ina	(mA/cm2)
	ik      (mA/cm2)
	il      (mA/cm2)
	ikf	(mA/cm2)
	mp_inf
	m_inf
	h_inf
	s_inf
	n_inf
	tau_mp
	tau_m
	tau_h
	tau_s
	tau_n
	q10_1
	q10_2
	q10_3
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	inap = gnapbar * mp*mp*mp * (v - ena)  : slow sodium
	ina = gnabar * m*m*m*h * (v - ena) : fast sodium
	ik   = gkbar * s * (v - ek) : slow potassium
	il   = gl * (v - el) : leak
	ikf = gkf * n*n*n*n* (v-ekf) : fast potassium
}

DERIVATIVE states {   : exact Hodgkin-Huxley equations
       evaluate_fct(v)
	mp'= (mp_inf - mp) / tau_mp
	m' = (m_inf - m) / tau_m
	h' = (h_inf - h) / tau_h
	s' = (s_inf - s) / tau_s
	n' = (n_inf - n) / tau_n  : fast potassium
}

UNITSOFF

INITIAL {
:
:	Q10 adjustment
:   Temperature dependence
:

	q10_1 = 2.2 ^ ((celsius-20)/ 10 )
	q10_2 = 2.9 ^ ((celsius-20)/ 10 )
	q10_3 = 3.0 ^ ((celsius-36)/ 10 )

	evaluate_fct(v)
	mp = mp_inf
	m = m_inf
	h = h_inf
	s = s_inf
	n = n_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

    : persistent Na+
	a = q10_1*vtrap1(v)
	b = q10_1*vtrap2(v)
	tau_mp = 1 / (a + b)
	mp_inf = a / (a + b)

    : fast Na+
	a = q10_1*vtrap6(v)
	b = q10_1*vtrap7(v)
	tau_m = 1 / (a + b)
	m_inf = a / (a + b)

	a = q10_2*vtrap8(v)
	b = q10_2*bhA / (1 + Exp(-(v+bhB)/bhC))
	tau_h = 1 / (a + b)
	h_inf = a / (a + b)

	v2 = v - vtraub : convert to traub convention

    : slow K+
	a = q10_3*asA / (Exp((v2+asB)/asC) + 1) 
	b = q10_3*bsA / (Exp((v2+bsB)/bsC) + 1)
	tau_s = 1 / (a + b)
	s_inf = a / (a + b)

    : fast K+
	a = q10_3*vtrapNA(v)
	b = q10_3*vtrapNB(v)
	tau_n = 1 / (a + b)
	n_inf = a / (a + b)
}

: vtrap functions to prevent discontinuity
FUNCTION vtrap(x) {
	if (x < -50) {
		vtrap = 0
	}else{
		vtrap = bsA / (Exp((x+bsB)/bsC) + 1)
	}
}

FUNCTION vtrap1(x) {
	if (fabs((x+ampB)/ampC) < 1e-6) {
		vtrap1 = ampA*ampC
	}else{
		vtrap1 = (ampA*(x+ampB)) / (1 - Exp(-(x+ampB)/ampC))
	}
}

FUNCTION vtrap2(x) {
	if (fabs((x+bmpB)/bmpC) < 1e-6) {
		vtrap2 = bmpA*bmpC : Ted Carnevale minus sign bug fix
	}else{
		vtrap2 = (bmpA*(-(x+bmpB))) / (1 - Exp((x+bmpB)/bmpC))
	}
}

FUNCTION vtrap6(x) {
	if (fabs((x+amB)/amC) < 1e-6) {
		vtrap6 = amA*amC
	}else{
		vtrap6 = (amA*(x+amB)) / (1 - Exp(-(x+amB)/amC))
	}
}

FUNCTION vtrap7(x) {
	if (fabs((x+bmB)/bmC) < 1e-6) {
		vtrap7 = bmA*bmC : Ted Carnevale minus sign bug fix
	}else{
		vtrap7 = (bmA*(-(x+bmB))) / (1 - Exp((x+bmB)/bmC))
	}
}

FUNCTION vtrap8(x) {
	if (fabs((x+ahB)/ahC) < 1e-6) {
		vtrap8 = ahA*ahC : Ted Carnevale minus sign bug fix
	}else{
		vtrap8 = (ahA*(-(x+ahB))) / (1 - Exp((x+ahB)/ahC)) 
	}
}

FUNCTION vtrapNA(x){
    if(fabs((anB - x)/anC) < 1e-6){
        vtrapNA = anA*anC
    }else{
        vtrapNA = anA*(v-anB)/(1-Exp((anB-v)/anC))
    }
}

FUNCTION vtrapNB(x){
    if(fabs((x - bnB)/bnC) < 1e-6){
        vtrapNB = bnA*bnC  
    }else{
        vtrapNB = bnA*(bnB-v)/(1-Exp((v-bnB)/bnC))
    }
}

FUNCTION Exp(x) {
	if (x < -100) {
		Exp = 0
	}else{
		Exp = exp(x)
	}
}

UNITSON