TITLE decay of submembrane calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Modified from Destexhe et al. 1994
: Differential equations.
:
: This file contains the following mechanisms:
: Simple first-order decay or buffering:
:
: Cai + B <-> ...
:
: which can be written as:
:
: dCai/dt = (cainf - Cai) / taur
:
: where cainf is the equilibrium intracellular calcium value (usually
: in the range of 200-300 nM) and taur is the time constant of calcium
: removal. The dynamics of submembranal calcium is usually thought to
: be relatively fast, in the 1-10 millisecond range (see Blaustein,
: TINS, 11: 438, 1988).
:
: All variables are range variables
:
: Originally written by Alain Destexhe, Salk Institute, Nov 12, 1992
: Modified by Albert Gidon, Humboldt-Universitat zu Berlin 18/09/2019
:
NEURON {
SUFFIX cad
USEION ca READ ica, cai WRITE cai
RANGE depth,cainf,taur
}
UNITS {
(molar) = (1/liter) : moles do not appear in units
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
(msM) = (ms mM)
}
CONSTANT {
FARADAY = 96489 (coul) : moles do not appear in units
}
PARAMETER {
depth = 1 (um) : depth of shell
taur = 1e10 (ms) : remove first-order decay
cainf = 2.4e-4 (mM)
}
STATE {
cai (mM)
}
INITIAL {
cai = cainf
}
ASSIGNED {
ica (mA/cm2)
drive_channel (mM/ms)
}
BREAKPOINT {
SOLVE state METHOD cnexp
}
DERIVATIVE state {
drive_channel = - (10000) * ica / (2 * FARADAY * depth)
if (drive_channel <= 0.) { drive_channel = 0. } : cannot pump inward
cai' = drive_channel + (cainf-cai)/taur
}