TITLE Low threshold calcium current Cerebellum Golgi Cell Model
:
: Ca++ current responsible for low threshold spikes (LTS)
: RETICULAR THALAMUS
: Differential equations
:
: Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992.
: The kinetics is described by standard equations (NOT GHK)
: using a m2h format, according to the voltage-clamp data
: (whole cell patch clamp) of Huguenard & Prince, J Neurosci.
: 12: 3804-3817, 1992. The model was introduced in Destexhe et al.
: J. Neurophysiology 72: 803-818, 1994.
: See http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca
:
: - Kinetics adapted to fit the T-channel of reticular neuron
: - Q10 changed to 5 and 3
: - Time constant tau_h fitted from experimental data
: - shift parameter for screening charge
:
: ACTIVATION FUNCTIONS FROM EXPERIMENTS (NO CORRECTION)
:
: Reversal potential taken from Nernst Equation
:
: Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX Golgi_Ca_LVA
USEION ca2 READ ca2i, ca2o WRITE ica2 VALENCE 2
RANGE g, gca2bar, m_inf, tau_m, h_inf, tau_h, shift
RANGE ica2, m ,h, ca2rev
RANGE phi_m, phi_h
RANGE v0_m_inf,v0_h_inf,k_m_inf,k_h_inf,C_tau_m
RANGE A_tau_m,v0_tau_m1,v0_tau_m2,k_tau_m1,k_tau_m2
RANGE C_tau_h ,A_tau_h ,v0_tau_h1,v0_tau_h2,k_tau_h1 ,k_tau_h2
}
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius (degC)
eca2 (mV)
gca2bar = 2.5e-4 (mho/cm2)
shift = 2 (mV) : screening charge for Ca_o = 2 mM
ca2i (mM) : adjusted for eca=120 mV
ca2o (mM)
v0_m_inf = -50 (mV)
v0_h_inf = -78 (mV)
k_m_inf = -7.4 (mV)
k_h_inf = 5.0 (mv)
C_tau_m = 3
A_tau_m = 1.0
v0_tau_m1 = -25 (mV)
v0_tau_m2 = -100 (mV)
k_tau_m1 = 10 (mV)
k_tau_m2 = -15 (mV)
C_tau_h = 85
A_tau_h = 1.0
v0_tau_h1 = -46 (mV)
v0_tau_h2 = -405 (mV)
k_tau_h1 = 4 (mV)
k_tau_h2 = -50 (mV)
}
STATE {
m h
}
ASSIGNED {
ica2 (mA/cm2)
ca2rev (mV)
g (mho/cm2)
m_inf
tau_m (ms)
h_inf
tau_h (ms)
phi_m
phi_h
}
BREAKPOINT {
SOLVE ca2state METHOD cnexp
ca2rev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (ca2o/ca2i)
g = gca2bar * m*m*h
ica2 = gca2bar * m*m*h * (v-ca2rev)
}
DERIVATIVE ca2state {
evaluate_fct(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
}
UNITSOFF
INITIAL {
:
: Activation functions and kinetics were obtained from
: Huguenard & Prince, and were at 23-25 deg.
: Transformation to 36 deg assuming Q10 of 5 and 3 for m and h
: (as in Coulter et al., J Physiol 414: 587, 1989)
:
evaluate_fct(v)
m = m_inf
h = h_inf
}
PROCEDURE evaluate_fct(v(mV)) {
:
: Time constants were obtained from J. Huguenard
:
phi_m = 5.0 ^ ((celsius-24)/10)
phi_h = 3.0 ^ ((celsius-24)/10)
TABLE m_inf, tau_m, h_inf, tau_h
DEPEND shift, phi_m, phi_h FROM -100 TO 30 WITH 13000
m_inf = 1.0 / ( 1 + exp((v + shift - v0_m_inf)/k_m_inf) )
h_inf = 1.0 / ( 1 + exp((v + shift - v0_h_inf)/k_h_inf) )
tau_m = ( C_tau_m + A_tau_m / ( exp((v+shift - v0_tau_m1)/ k_tau_m1) + exp((v+shift - v0_tau_m2)/k_tau_m2) ) ) / phi_m
tau_h = ( C_tau_h + A_tau_h / ( exp((v+shift - v0_tau_h1)/k_tau_h1) + exp((v+shift - v0_tau_h2)/k_tau_h2) ) ) / phi_h
}
UNITSON