: Calcium activated K channel.
: From Moczydlowski and Latorre (1983) J. Gen. Physiol. 82
: Model 3. (Scheme R1 page 523)
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (kilocoulombs)
R = (k-mole) (joule/degC)
}
NEURON {
SUFFIX skkca
USEION ca READ cai
USEION k READ ek WRITE ik
RANGE gkbar, ik, qfact, abar, bbar, stau
GLOBAL oinf, tau
}
PARAMETER {
stau = 1
qfact = 0.72
celsius_sk = 22 (degC) : 35
v (mV)
gkbar=0.175 (mho/cm2) : Maximum Permeability
cai (mM)
ek (mV)
d1 = .84 :page 527 Table II channel A
d2 = 1.0 :our index 2 is the paper's subscript 4
k1 = .18 (mM)
k2 = .011 (mM)
abar = .48 (/ms)
bbar = .28 (/ms) :page 524. our bbar is the paper's alpha
}
ASSIGNED {
ik (mA/cm2)
oinf
tau (ms)
}
STATE { o } : fraction of open channels
BREAKPOINT {
SOLVE state METHOD cnexp
ik = gkbar*o*(v - ek)
}
DERIVATIVE state {
rate(v, cai)
o' = (oinf - o)/(tau/qfact)
}
INITIAL {
rate(v, cai)
o = oinf
: VERBATIM
: printf("R = %f\n",R);
: printf("F = %f\n",FARADAY);
: ENDVERBATIM
}
: From R1 page 523. beta in the paper is the rate from closed to open
: and we call it alp here.
FUNCTION alp(v (mV), ca (mM)) (1/ms) { :callable from hoc
alp = abar/(1 + exp1(k1,d1,v)/ca)
}
FUNCTION bet(v (mV), ca (mM)) (1/ms) { :callable from hoc
bet = bbar/(1 + ca/exp1(k2,d2,v))
}
FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius_sk))
}
PROCEDURE rate(v (mV), ca (mM)) { :callable from hoc
LOCAL a
a = alp(v,ca)
tau = stau/(a + bet(v, ca))
oinf = a*tau
}