COMMENT
**************************************************
File generated by: neuroConstruct v1.7.1
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
KA_iAMC_ChannelML (Type: Channel mechanism, Model: ChannelML based process)
with parameters:
/channelml/@units = Physiological Units
/channelml/notes = AOB A Type Potassium Ion Channel
/channelml/channel_type/@name = KA_iAMC_ChannelML
/channelml/channel_type/status/@value = stable
/channelml/channel_type/status/comment = A Type Potassium Ion Channel from an intrinsically oscillating AOB mitral cell from parameters recorded in the lab of M. Spehr RWTH Aachen
/channelml/channel_type/status/contributor/name = Simon O'Connor
/channelml/channel_type/notes = A-type K channel, with rate equations expressed in tau and inf form
/channelml/channel_type/authorList/modelTranslator/name = Simon O'Connor
/channelml/channel_type/authorList/modelTranslator/institution = UH
/channelml/channel_type/authorList/modelTranslator/email = simon.oconnor - at - btinternet.com
/channelml/channel_type/neuronDBref/modelName = K channels
/channelml/channel_type/neuronDBref/uri = http://senselab.med.yale.edu/neurondb/channelGene2.aspx#table3
/channelml/channel_type/current_voltage_relation/@cond_law = ohmic
/channelml/channel_type/current_voltage_relation/@ion = k
/channelml/channel_type/current_voltage_relation/@default_gmax = 4
/channelml/channel_type/current_voltage_relation/@default_erev = -86.5
/channelml/channel_type/current_voltage_relation/gate[1]/@name = m
/channelml/channel_type/current_voltage_relation/gate[1]/@instances = 1
/channelml/channel_type/current_voltage_relation/gate[1]/closed_state/@id = m0
/channelml/channel_type/current_voltage_relation/gate[1]/open_state/@id = m
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@name = tau
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@from = m0
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@to = m
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@expr = (1+4*exp(-((v-32)/50)^2))
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@name = inf
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@from = m0
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@to = m
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@expr = v < -50 ? 0 : 1 / (1 + exp(0 - (v + 25.7)/4.4))
/channelml/channel_type/current_voltage_relation/gate[2]/@name = h
/channelml/channel_type/current_voltage_relation/gate[2]/@instances = 1
/channelml/channel_type/current_voltage_relation/gate[2]/closed_state/@id = h0
/channelml/channel_type/current_voltage_relation/gate[2]/open_state/@id = h
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@name = tau
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@from = h0
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@to = h
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@expr = (1+100*exp(-((v-10)/40)^2))
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@name = inf
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@from = h0
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@to = h
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@expr_form = sigmoid
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@rate = 1
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@scale = 4.4
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@midpoint = -25
// File from which this was generated: /home/Simon/NML2_Test/AOB_MC_neuroConstruct/cellMechanisms/KA_iAMC_ChannelML/KA_chan.xml
// XSL file with mapping to simulator: /home/Simon/NML2_Test/AOB_MC_neuroConstruct/cellMechanisms/KA_iAMC_ChannelML/ChannelML_v1.8.1_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: Physiological Units
COMMENT
AOB A Type Potassium Ion Channel
ENDCOMMENT
TITLE Channel: KA_iAMC_ChannelML
COMMENT
A-type K channel, with rate equations expressed in tau and inf form
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX KA_iAMC_ChannelML
USEION k READ ek WRITE ik VALENCE 1 ? reversal potential of ion is read, outgoing current is written
RANGE gmax, gion
RANGE minf, mtau
RANGE hinf, htau
}
PARAMETER {
gmax = 0.004 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of k
ek (mV)
? The outward flow of ion: k calculated by rate equations...
ik (mA/cm2)
gion (S/cm2)
minf
mtau (ms)
hinf
htau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gion = gmax * (m
^1) * (h
^1)
ik = gion*(v - ek)
}
INITIAL {
ek = -86.5
rates(v)
m = minf
h = hinf
}
STATE {
m
h
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE rates(v(mV)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta
, temp_adj_m
, temp_adj_h,
A_inf_h, B_inf_h, Vhalf_inf_h
TABLE minf, mtau,hinf, htau
DEPEND celsius FROM -100 TO 100 WITH 400
UNITSOFF
temp_adj_m = 1
temp_adj_h = 1
? *** Adding rate equations for gate: m ***
? Found a generic form of the rate equation for tau, using expression: (1+4*exp(-((v-32)/50)^2))
tau = (1+4*exp(-((v-32)/50)^2))
mtau = tau/temp_adj_m
? Found a generic form of the rate equation for inf, using expression: v < -50 ? 0 : 1 / (1 + exp(0 - (v + 25.7)/4.4))
if (v < -50 ) {
inf = 0
} else {
inf = 1 / (1 + exp(0 - (v + 25.7)/4.4))
}
minf = inf
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: h ***
? Found a generic form of the rate equation for tau, using expression: (1+100*exp(-((v-10)/40)^2))
tau = (1+100*exp(-((v-10)/40)^2))
htau = tau/temp_adj_h
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
A_inf_h = 1
B_inf_h = 4.4
Vhalf_inf_h = -25
inf = A_inf_h / (exp((v - Vhalf_inf_h) / B_inf_h) + 1)
hinf = inf
? *** Finished rate equations for gate: h ***
}
UNITSON