COMMENT
**************************************************
File generated by: neuroConstruct v1.7.1
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
NaP_iAMC_Fig10Hii_ChannelML (Type: Channel mechanism, Model: ChannelML based process)
with parameters:
/channelml/@units = Physiological Units
/channelml/notes = Mitral Cell Persistent Sodium ion Channel
/channelml/channel_type/@name = NaP_iAMC_Fig10Hii_ChannelML
/channelml/channel_type/@density = yes
/channelml/channel_type/status/@value = stable
/channelml/channel_type/status/comment = Sodium Persistent conductance modified from Rubin an Cleland 2006 using AOB mitral cell data from the Marc Spehr RWTH Aachen
/channelml/channel_type/status/contributor/name = Simon O'Connor
/channelml/channel_type/notes = Na Channel
/channelml/channel_type/authorList/modelTranslator/name = Simon O'Connor
/channelml/channel_type/authorList/modelTranslator/institution = UH
/channelml/channel_type/authorList/modelTranslator/email = simon.oconnor - at - btinternet.com
/channelml/channel_type/current_voltage_relation/@cond_law = ohmic
/channelml/channel_type/current_voltage_relation/@ion = na
/channelml/channel_type/current_voltage_relation/@default_gmax = 0.06
/channelml/channel_type/current_voltage_relation/@default_erev = 67
/channelml/channel_type/current_voltage_relation/@charge = 1
/channelml/channel_type/current_voltage_relation/gate[1]/@name = m
/channelml/channel_type/current_voltage_relation/gate[1]/@instances = 3
/channelml/channel_type/current_voltage_relation/gate[1]/closed_state/@id = m0
/channelml/channel_type/current_voltage_relation/gate[1]/open_state/@id = m
/channelml/channel_type/current_voltage_relation/gate[1]/open_state/@fraction = 1
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@name = tau
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@from = m0
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@to = m
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[1]/time_course/@expr = (1+(4 * (exp(0 - ((v + 50)/20)^2))))
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@name = inf
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@from = m0
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@to = m
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@expr_form = sigmoid
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@rate = 0.499622025796
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@scale = -4.9
/channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@midpoint = -59.0
/channelml/channel_type/current_voltage_relation/gate[2]/@name = h
/channelml/channel_type/current_voltage_relation/gate[2]/@instances = 1
/channelml/channel_type/current_voltage_relation/gate[2]/closed_state/@id = h0
/channelml/channel_type/current_voltage_relation/gate[2]/open_state/@id = h
/channelml/channel_type/current_voltage_relation/gate[2]/open_state/@fraction = 1
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@name = tau
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@from = h0
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@to = h
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[2]/time_course/@expr = (5000+(16000 * (exp(0 - ((v + 50)/20)^2))))
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@name = inf
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@from = h0
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@to = h
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@expr_form = sigmoid
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@rate = 0.499622025796
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@scale = 4.9
/channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@midpoint = -59.0
/channelml/channel_type/current_voltage_relation/gate[3]/@name = n
/channelml/channel_type/current_voltage_relation/gate[3]/@instances = 1
/channelml/channel_type/current_voltage_relation/gate[3]/closed_state/@id = n0
/channelml/channel_type/current_voltage_relation/gate[3]/open_state/@id = n
/channelml/channel_type/current_voltage_relation/gate[3]/open_state/@fraction = 1
/channelml/channel_type/current_voltage_relation/gate[3]/time_course/@name = tau
/channelml/channel_type/current_voltage_relation/gate[3]/time_course/@from = n0
/channelml/channel_type/current_voltage_relation/gate[3]/time_course/@to = n
/channelml/channel_type/current_voltage_relation/gate[3]/time_course/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[3]/time_course/@expr = (2+(4 * (exp(0 - ((v + 50)/20)^2))))
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@name = inf
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@from = n0
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@to = n
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@expr_form = sigmoid
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@rate = 0.499622025796
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@scale = 4.9
/channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@midpoint = -59.0
/channelml/channel_type/impl_prefs/table_settings/@max_v = 100
/channelml/channel_type/impl_prefs/table_settings/@min_v = -100
/channelml/channel_type/impl_prefs/table_settings/@table_divisions = 2000
// File from which this was generated: /home/Simon/NML2_Test/iAMC_Fig10H2T/AOB_MC_neuroConstruct/cellMechanisms/NaP_iAMC_Fig10Hii_ChannelML/NaChannel.xml
// XSL file with mapping to simulator: /home/Simon/NML2_Test/iAMC_Fig10H2T/AOB_MC_neuroConstruct/cellMechanisms/NaP_iAMC_Fig10Hii_ChannelML/ChannelML_v1.8.1_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: Physiological Units
COMMENT
Mitral Cell Persistent Sodium ion Channel
ENDCOMMENT
TITLE Channel: NaP_iAMC_Fig10Hii_ChannelML
COMMENT
Na Channel
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX NaP_iAMC_Fig10Hii_ChannelML
USEION na READ ena WRITE ina VALENCE 1 ? reversal potential of ion is read, outgoing current is written
RANGE gmax, gion
RANGE minf, mtau
RANGE hinf, htau
RANGE ninf, ntau
}
PARAMETER {
gmax = 0.000059999999999999995 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of na
ena (mV)
? The outward flow of ion: na calculated by rate equations...
ina (mA/cm2)
gion (S/cm2)
minf
mtau (ms)
hinf
htau (ms)
ninf
ntau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gion = gmax * ((1*m)
^3) * ((1*h)
^1) * ((1*n)
^1)
ina = gion*(v - ena)
}
INITIAL {
ena = 67
rates(v)
m = minf
h = hinf
n = ninf
}
STATE {
m
h
n
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
n' = (ninf - n)/ntau
}
PROCEDURE rates(v(mV)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta
, temp_adj_m,
A_inf_m, B_inf_m, Vhalf_inf_m
, temp_adj_h,
A_inf_h, B_inf_h, Vhalf_inf_h
, temp_adj_n,
A_inf_n, B_inf_n, Vhalf_inf_n
TABLE minf, mtau,hinf, htau,ninf, ntau
DEPEND celsius FROM -100 TO 100 WITH 2000
UNITSOFF
temp_adj_m = 1
temp_adj_h = 1
temp_adj_n = 1
? *** Adding rate equations for gate: m ***
? Found a generic form of the rate equation for tau, using expression: (1+(4 * (exp(0 - ((v + 50)/20)^2))))
tau = (1+(4 * (exp(0 - ((v + 50)/20)^2))))
mtau = tau/temp_adj_m
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
A_inf_m = 0.499622025796
B_inf_m = -4.9
Vhalf_inf_m = -59.0
inf = A_inf_m / (exp((v - Vhalf_inf_m) / B_inf_m) + 1)
minf = inf
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: h ***
? Found a generic form of the rate equation for tau, using expression: (5000+(16000 * (exp(0 - ((v + 50)/20)^2))))
tau = (5000+(16000 * (exp(0 - ((v + 50)/20)^2))))
htau = tau/temp_adj_h
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
A_inf_h = 0.499622025796
B_inf_h = 4.9
Vhalf_inf_h = -59.0
inf = A_inf_h / (exp((v - Vhalf_inf_h) / B_inf_h) + 1)
hinf = inf
? *** Finished rate equations for gate: h ***
? *** Adding rate equations for gate: n ***
? Found a generic form of the rate equation for tau, using expression: (2+(4 * (exp(0 - ((v + 50)/20)^2))))
tau = (2+(4 * (exp(0 - ((v + 50)/20)^2))))
ntau = tau/temp_adj_n
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
A_inf_n = 0.499622025796
B_inf_n = 4.9
Vhalf_inf_n = -59.0
inf = A_inf_n / (exp((v - Vhalf_inf_n) / B_inf_n) + 1)
ninf = inf
? *** Finished rate equations for gate: n ***
}
UNITSON