TITLE Cerebellum Granule Cell Model
COMMENT
basato sul modello di Raman a 13 stati. genera corrente di sodio transiente, persistente e risorgente
with Long-Term Inactivation States L3,L4,L5,L6. and Vshift = -10mV
ENDCOMMENT
NEURON {
SUFFIX GRC_NA
USEION na READ ena WRITE ina
RANGE gnabar, ina, g
RANGE gamma, delta, epsilon, Con, Coff, Oon, Ooff, Lon, Loff
RANGE Aalfa, Valfa, Abeta, Vbeta, Ateta, Vteta, Agamma, Adelta, Aepsilon, ACon, ACoff, AOon, AOoff, ALon, ALoff, Vshift
RANGE n1, n2, n3, n4, c, d, V_threshold, use_threshold
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
Vshift = -10 (mV)
celsius = 20 (degC)
ena = 87.39 (mV)
gnabar = 0.013 (mho/cm2)
Aalfa = 353.91 ( /ms)
Valfa = 13.99 ( /mV)
Abeta = 1.272 ( /ms)
Vbeta = 13.99 ( /mV)
Agamma = 150 ( /ms)
Adelta = 40 ( /ms)
Aepsilon = 1.75 ( /ms)
Ateta = 0.0201 ( /ms)
Vteta = 25
ACon = 0.5 ( /ms)
ACoff = 0.5 ( /ms)
AOon = 7.5 ( /ms)
AOoff = 0.0005 ( /ms)
ALon = 0 ( /ms)
ALoff = 1000 ( /ms)
n1 = 5.422
n2 = 3.279
n3 = 1.83
n4 = 0.738
c = 20
d = 0.075
V_threshold = -65 (mV)
use_threshold = 1
}
ASSIGNED {
ina (mA/cm2)
g (mho/cm2)
gamma
delta
epsilon
Con
Coff
Oon
Ooff
Lon
Loff
a
b
Q10
}
STATE {
C1
C2
C3
C4
C5
O
OB
I1
I2
I3
I4
I5
I6
L3
L4
L5
L6
}
INITIAL {
C1=1
C2=0
C3=0
C4=0
C5=0
O=0
OB=0
I1=0
I2=0
I3=0
I4=0
I5=0
I6=0
L3=0
L4=0
L5=0
L6=0
Q10 =3^((celsius-20(degC))/10 (degC))
gamma = Q10 * Agamma
delta = Q10 * Adelta
epsilon = Q10 * Aepsilon
Con = Q10 * ACon
Coff = Q10 * ACoff
Oon = Q10 * AOon
Ooff = Q10 * AOoff
Lon = Q10 * ALon
Loff = Q10 * ALoff
a = (Oon/Con)^0.25
b = (Ooff/Coff)^0.25
}
BREAKPOINT {
if ( use_threshold ) {
if (v < V_threshold) {
delta = 1e10
gamma = 1e-10
:printf("%f\t",v)
} else {
delta = Q10 * Adelta
gamma = Q10 * Agamma
}
}
SOLVE kstates METHOD sparse
g = gnabar * O : (mho/cm2)
ina = g * (v - ena) : (mA/cm2)
}
FUNCTION alfa(v(mV))(/ms){
alfa = Q10*Aalfa*exp((v-Vshift)/Valfa)
}
FUNCTION beta(v(mV))(/ms){
beta = Q10*Abeta*exp((-v+Vshift)/Vbeta)
}
FUNCTION teta(v(mV))(/ms){
teta = Q10*Ateta*exp(-v/Vteta)
}
KINETIC kstates {
: 1 riga
~ C1 <-> C2 (n1*alfa(v),n4*beta(v))
~ C2 <-> C3 (n2*alfa(v),n3*beta(v))
~ C3 <-> C4 (n3*alfa(v),n2*beta(v))
~ C4 <-> C5 (n4*alfa(v),n1*beta(v))
~ C5 <-> O (gamma,delta)
~ O <-> OB (epsilon,teta(v))
: 2 riga
~ I1 <-> I2 (n1*alfa(v)*a,n4*beta(v)*b)
~ I2 <-> I3 (n2*alfa(v)*a,n3*beta(v)*b)
~ I3 <-> I4 (n3*alfa(v)*a,n2*beta(v)*b)
~ I4 <-> I5 (n4*alfa(v)*a,n1*beta(v)*b)
~ I5 <-> I6 (gamma,delta)
: 3 riga
~ L3 <-> L4 (n3*alfa(v)*c,n2*alfa(v)*d)
~ L4 <-> L5 (n4*alfa(v)*c,n1*alfa(v)*d)
~ L5 <-> L6 (gamma,delta)
: connette 1 riga con 2 riga
~ C1 <-> I1 (Con,Coff)
~ C2 <-> I2 (Con*a,Coff*b)
~ C3 <-> I3 (Con*a^2,Coff*b^2)
~ C4 <-> I4 (Con*a^3,Coff*b^3)
~ C5 <-> I5 (Con*a^4,Coff*b^4)
~ O <-> I6 (Oon,Ooff)
: connette 1 riga con 3 riga
~ C3 <-> L3 (Lon,Loff)
~ C4 <-> L4 (Lon*c,Loff*d)
~ C5 <-> L5 (Lon*c^2,Loff*d^2)
~ O <-> L6 (Lon*c^2,Loff*d^2)
CONSERVE C1+C2+C3+C4+C5+O+OB+I1+I2+I3+I4+I5+I6+L3+L4+L5+L6=1
}