TITLE Cerebellum Granule Cell Model
COMMENT
Reference: Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells:Experimental
Evidence and Modeling of a Slow K+-Dependent Mechanism
Egidio D'Angelo,Thierry Nieus,Arianna Maffei,Simona Armano,Paola Rossi,Vanni Taglietti,
Andrea Fontana and Giovanni Naldi
ENDCOMMENT
NEURON {
SUFFIX GrG_KV
USEION k READ ek WRITE ik
RANGE gkbar, ik, g, alpha_n, beta_n
RANGE Aalpha_n, Kalpha_n, V0alpha_n
RANGE Abeta_n, Kbeta_n, V0beta_n
RANGE n_inf, tau_n
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
:Kbeta_n = -0.0125 (/mV)
Aalpha_n = -0.01 (/ms-mV)
Kalpha_n = -10 (mV)
V0alpha_n = -25 (mV)
Abeta_n = 0.125 (/ms)
Kbeta_n = -80 (mV)
V0beta_n = -35 (mV)
v (mV)
gkbar= 0.003 (mho/cm2)
ek = -84.69 (mV)
celsius = 30 (degC)
}
STATE {
n
}
ASSIGNED {
ik (mA/cm2)
n_inf
tau_n (ms)
g (mho/cm2)
alpha_n (/ms)
beta_n (/ms)
}
INITIAL {
rate(v)
n = n_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gkbar*n*n*n*n
ik = g*(v - ek)
alpha_n = alp_n(v)
beta_n = bet_n(v)
}
DERIVATIVE states {
rate(v)
n' =(n_inf - n)/tau_n
}
FUNCTION alp_n(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-6.3(degC))/10(degC))
alp_n = Q10*Aalpha_n*linoid(v-V0alpha_n, Kalpha_n)
}
FUNCTION bet_n(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-6.3(degC))/10(degC))
bet_n = Q10*Abeta_n*exp((v-V0beta_n)/Kbeta_n)
}
PROCEDURE rate(v (mV)) {LOCAL a_n, b_n
TABLE n_inf, tau_n
DEPEND Aalpha_n, Kalpha_n, V0alpha_n,
Abeta_n, Kbeta_n, V0beta_n, celsius FROM -100 TO 100 WITH 200
a_n = alp_n(v)
b_n = bet_n(v)
tau_n = 1/(a_n + b_n)
n_inf = a_n/(a_n + b_n)
}
FUNCTION linoid(x (mV),y (mV)) (mV) {
if (fabs(x/y) < 1e-6) {
linoid = y*(1 - x/y/2)
}else{
linoid = x/(exp(x/y) - 1)
}
}