TITLE Cerebellum Granule Cell Model
COMMENT
Reference: Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells:Experimental
Evidence and Modeling of a Slow K+-Dependent Mechanism
Egidio D'Angelo,Thierry Nieus,Arianna Maffei,Simona Armano,Paola Rossi,Vanni Taglietti,
Andrea Fontana and Giovanni Naldi
ENDCOMMENT
NEURON {
SUFFIX GrG_Nar
USEION na READ ena WRITE ina
RANGE gnabar, ina, g
RANGE Aalpha_s,Abeta_s,V0alpha_s,V0beta_s,Kalpha_s,Kbeta_s
RANGE Shiftalpha_s,Shiftbeta_s,tau_s,s_inf
RANGE Aalpha_f,Abeta_f,V0alpha_f,V0beta_f,Kalpha_f, Kbeta_f
RANGE tau_f,f_inf
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
: s-ALFA
Aalpha_s = -0.00493 (/ms)
V0alpha_s = -4.48754 (mV)
Kalpha_s = -6.81881 (mV)
Shiftalpha_s = 0.00008 (/ms)
: s-BETA
Abeta_s = 0.01558 (/ms)
V0beta_s = 43.97494 (mV)
Kbeta_s = 0.10818 (mV)
Shiftbeta_s = 0.04752 (/ms)
: f-ALFA
Aalpha_f = 0.31836 (/ms)
V0alpha_f = -80 (mV)
Kalpha_f = -62.52621 (mV)
: f-BETA
Abeta_f = 0.01014 (/ms)
V0beta_f = -83.3332 (mV)
Kbeta_f = 16.05379 (mV)
v (mV)
gnabar= 0.0005 (mho/cm2)
ena = 87.39 (mV)
celsius = 30 (degC)
}
STATE {
s
f
}
ASSIGNED {
ina (mA/cm2)
g (mho/cm2)
alpha_s (/ms)
beta_s (/ms)
s_inf
tau_s (ms)
alpha_f (/ms)
beta_f (/ms)
f_inf
tau_f (ms)
}
INITIAL {
rate(v)
s = s_inf
f = f_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gnabar*s*f
ina = g*(v - ena)
alpha_s = alp_s(v)
beta_s = bet_s(v)
alpha_f = alp_f(v)
beta_f = bet_f(v)
}
DERIVATIVE states {
rate(v)
s' = ( s_inf - s ) / tau_s
f' = ( f_inf - f ) / tau_f
}
PROCEDURE rate(v (mV)) { LOCAL a_s,b_s,a_f,b_f
a_s = alp_s(v)
b_s = bet_s(v)
s_inf = a_s / ( a_s + b_s )
tau_s = 1 / ( a_s + b_s )
a_f = alp_f(v)
b_f = bet_f(v)
f_inf = a_f / ( a_f + b_f )
tau_f = 1 / ( a_f + b_f )
}
FUNCTION alp_s(v (mV)) (/ms){ LOCAL Q10
Q10 = 3^( ( celsius - 20 (degC) ) / 10 (degC) )
alp_s = Q10*(Shiftalpha_s+Aalpha_s*((v+V0alpha_s)/ 1 (mV) )/(exp((v+V0alpha_s)/Kalpha_s)-1))
}
FUNCTION bet_s(v (mV)) (/ms){ LOCAL Q10
Q10 = 3^((celsius-20(degC))/10(degC))
bet_s = Q10*(Shiftbeta_s+Abeta_s*((v+V0beta_s)/1 (mV) )/(exp((v+V0beta_s)/Kbeta_s)-1))
}
FUNCTION alp_f(v (mV)) (/ms){ LOCAL Q10
Q10 = 3^( ( celsius - 20 (degC) ) / 10 (degC) )
alp_f = Q10 * Aalpha_f * exp( ( v - V0alpha_f ) / Kalpha_f)
}
FUNCTION bet_f(v (mV)) (/ms){ LOCAL Q10
Q10 = 3^( ( celsius - 20 (degC) ) / 10 (degC) )
bet_f = Q10 * Abeta_f * exp( ( v - V0beta_f ) / Kbeta_f )
}