TITLE Cerebellum Granule Cell Model
COMMENT
KA channel
Author: E.D'Angelo, T.Nieus, A. Fontana
Last revised: Egidio 3.12.2003
:Suffix from GRC_KA to Kv4_3
ENDCOMMENT
NEURON {
SUFFIX Kv4_3
USEION k READ ek WRITE ik
RANGE gkbar, ik, g, alpha_a, beta_a, alpha_b, beta_b
RANGE Aalpha_a, Kalpha_a, V0alpha_a
RANGE Abeta_a, Kbeta_a, V0beta_a
RANGE Aalpha_b, Kalpha_b, V0alpha_b
RANGE Abeta_b, Kbeta_b, V0beta_b
RANGE V0_ainf, K_ainf, V0_binf, K_binf
RANGE a_inf, tau_a, b_inf, tau_b
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
Aalpha_a = 0.8147 (/ms) :4.88826
Kalpha_a = -23.32708 (mV)
V0alpha_a = -9.17203 (mV)
Abeta_a = 0.1655 (/ms) : 0.99285
Kbeta_a = 19.47175 (mV)
V0beta_a = -18.27914 (mV)
Aalpha_b = 0.0368 (/ms) : 0.11042
Kalpha_b = 12.8433 (mV)
V0alpha_b = -111.33209 (mV)
Abeta_b = 0.0345(/ms) : 0.10353
Kbeta_b = -8.90123 (mV)
V0beta_b = -49.9537 (mV)
V0_ainf = -38(mV)
K_ainf = -17(mV)
V0_binf = -78.8 (mV)
K_binf = 8.4 (mV)
v (mV)
gkbar= 0.0032 (mho/cm2) :0.003
celsius = 30 (degC)
}
STATE {
a
b
}
ASSIGNED {
ik (mA/cm2)
a_inf
b_inf
tau_a (ms)
tau_b (ms)
g (mho/cm2)
alpha_a (/ms)
beta_a (/ms)
alpha_b (/ms)
beta_b (/ms)
ek (mV)
}
INITIAL {
rate(v)
a = a_inf
b = b_inf
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
g = gkbar*a*a*a*b
ik = g*(v - ek)
alpha_a = alp_a(v)
beta_a = bet_a(v)
alpha_b = alp_b(v)
beta_b = bet_b(v)
}
DERIVATIVE states {
rate(v)
a' =(a_inf - a)/tau_a
b' =(b_inf - b)/tau_b
}
FUNCTION alp_a(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-25.5(degC))/10(degC))
: alp_a = Q10*Aalpha_a*exp(Kalpha_a*(v-V0alpha_a))
: alp_a = -0.04148(/mV-ms)*linoid(v+67.697(mV),-3.857(mV))
alp_a = Q10*Aalpha_a*sigm(v-V0alpha_a,Kalpha_a)
}
FUNCTION bet_a(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-25.5(degC))/10(degC))
: bet_a = Q10*Abeta_a*exp(Kbeta_a*(v-V0beta_a))
: bet_a = 0.0359(/mV-ms)*linoid(v+45.878(mV),23.654(mV))
bet_a = Q10*Abeta_a/(exp((v-V0beta_a)/Kbeta_a))
}
FUNCTION alp_b(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-25.5(degC))/10(degC))
: alp_b = Q10*Aalpha_b*exp(Kalpha_b*(v-V0alpha_b))
: alp_b = 0.356(/mV-ms)*linoid(v+231.03(mV),17.8(mV))
alp_b = Q10*Aalpha_b*sigm(v-V0alpha_b,Kalpha_b)
}
FUNCTION bet_b(v(mV))(/ms) { LOCAL Q10
Q10 = 3^((celsius-25.5(degC))/10(degC))
: bet_b = Q10*Abeta_b*exp(Kbeta_b*(v-V0beta_b))
: bet_b = -0.00825(/mV-ms)*linoid(v+43.284(mV),-8.927(mV))
bet_b = Q10*Abeta_b*sigm(v-V0beta_b,Kbeta_b)
}
PROCEDURE rate(v (mV)) {LOCAL a_a, b_a, a_b, b_b
TABLE a_inf, tau_a, b_inf, tau_b
DEPEND Aalpha_a, Kalpha_a, V0alpha_a,
Abeta_a, Kbeta_a, V0beta_a,
Aalpha_b, Kalpha_b, V0alpha_b,
Abeta_b, Kbeta_b, V0beta_b, celsius FROM -100 TO 30 WITH 13000
a_a = alp_a(v)
b_a = bet_a(v)
a_b = alp_b(v)
b_b = bet_b(v)
a_inf = 1/(1+exp((v-V0_ainf)/K_ainf))
tau_a = 1/(a_a + b_a)
b_inf = 1/(1+exp((v-V0_binf)/K_binf))
tau_b = 1/(a_b + b_b)
: Bardoni Belluzzi data
: a_inf = 1/(1+exp(-(v+46.7)/19.8))
: tau_a = 0.41*exp(-(v+43.5)/42.8)+0.167
: b_inf = 1/(1+exp((v+78.8)/8.4))
: tau_b = 10.8 + 0.03*v + 1/(57.9*exp(0.127*v)+0.000134*exp(-0.059*v))
}
FUNCTION linoid(x (mV),y (mV)) (mV) {
if (fabs(x/y) < 1e-6) {
linoid = y*(1 - x/y/2)
}else{
linoid = x/(exp(x/y) - 1)
}
}
FUNCTION sigm(x (mV),y (mV)) {
sigm = 1/(exp(x/y) + 1)
}