__author__ = 'milsteina'
from specify_cells import *
import random
import os
"""
Builds a cell locally so each engine is ready to receive jobs one at a time, specified by an index corresponding to
which synapse to stimulate (all spines), for comparing Expected to Actual depolarization.
"""
morph_filename = 'EB2-late-bifurcation.swc'
# exponential ampar conductance gradient applied to trunk; inheritance applied to apical and tuft; constant basal
mech_filename = '043016 Type A - km2_NMDA_KIN5_Pr'
rec_filename = 'output'+datetime.datetime.today().strftime('%m%d%Y%H%M')+'-pid'+str(os.getpid())
def stimulate_single_synapse(syn_index):
"""
:param syn_index: int
:return: str
"""
start_time = time.time()
syn = syn_list[syn_index]
spine = syn.node
branch = spine.parent.parent
sim.modify_rec(2, branch)
sim.parameters['spine_index'] = spine.index
syn.source.play(spike_times)
sim.run(v_init)
with h5py.File(data_dir+rec_filename+'.hdf5', 'a') as f:
sim.export_to_file(f, syn_index)
syn.source.play(h.Vector()) # playing an empty vector turns this synapse off for future runs while keeping the
# VecStim source object in existence so it can be activated again
print 'Process:', os.getpid(), 'completed Iteration:', syn_index, 'Spine:', syn.node.index, 'Node:', \
syn.node.parent.parent.name, 'in %.3f s' % (time.time() - start_time)
return rec_filename
equilibrate = 250. # time to steady-state
duration = 450.
v_init = -67.
syn_types = ['AMPA_KIN', 'NMDA_KIN']
syn_list = []
cell = CA1_Pyr(morph_filename, mech_filename, full_spines=True)
random.seed(0)
for branch in cell.basal+cell.trunk+cell.apical+cell.tuft:
for spine in branch.spines:
syn = Synapse(cell, spine, syn_types, stochastic=0)
syn_list.append(syn)
cell.init_synaptic_mechanisms()
sim = QuickSim(duration, verbose=False)
sim.parameters['equilibrate'] = equilibrate
sim.parameters['duration'] = duration
sim.append_rec(cell, cell.tree.root, description='soma')
# look for a trunk bifurcation
trunk_bifurcation = [trunk for trunk in cell.trunk if cell.is_bifurcation(trunk, 'trunk')]
if trunk_bifurcation:
trunk_branches = [branch for branch in trunk_bifurcation[0].children if branch.type == 'trunk']
# get where the thickest trunk branch gives rise to the tuft
trunk = max(trunk_branches, key=lambda node: node.sec(0.).diam)
trunk = (node for node in cell.trunk if cell.node_in_subtree(trunk, node) and 'tuft' in (child.type
for child in node.children)).next()
else:
trunk_bifurcation = [node for node in cell.trunk if 'tuft' in (child.type for child in node.children)]
trunk = trunk_bifurcation[0]
sim.append_rec(cell, trunk, 0., description='trunk')
sim.append_rec(cell, trunk, description='branch') # placeholder for branch
spike_times = h.Vector([equilibrate])