function [logp, yhat, res] = tapas_bayes_optimal_whichworld(r, infStates, ptrans)
% Calculates the log-probability of the inputs given the current predictions
%
% --------------------------------------------------------------------------------------------------
% Copyright (C) 2013 Christoph Mathys, TNU, UZH & ETHZ
%
% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public
% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL
% (either version 3 or, at your option, any later version). For further details, see the file
% COPYING or <http://www.gnu.org/licenses/>.
% Initialize returned log-probabilities as NaNs so that NaN is
% returned for all irregualar trials
n = size(infStates,1);
logp = NaN(n,1);
yhat = NaN(n,1);
res = NaN(n,1);
% Number of worlds
nw = 4;
% Bernoulli parameters that characterize
% worlds (row vector)
bp = [0.85, 0.65, 0.35, 0.15];
% Weed irregular trials out from predictions and inputs
% States
pred = squeeze(infStates(:,1,:,1,1));
%states = squeeze(infStates(:,1,:,1));
%pred = [1/nw*ones(1,nw); states];
%pred(end,:) = [];
pred(r.irr,:) = [];
% Inputs
u = r.u(:,1);
u(r.irr) = [];
% Calculate probabilities of inputs
% Likelihood of outcome u(k)
bpm = repmat(bp, length(u), 1);
um = repmat(u, 1, nw);
llh = bpm.^um.*(1-bpm).^(1-um);
% Marginal likelihood of outcome
mllhm = llh.*pred;
mllh = sum(mllhm,2);
% Calculate log-probabilities for non-irregular trials
reg = ~ismember(1:n,r.irr);
logp(reg) = log(mllh);
yhat(reg) = mllh;
res(reg) = -log(mllh);
return;