function tapas_hgf_ar1_mab_plotTraj(r)
% Plots the estimated or generated trajectories for the HGF perceptual model
% Usage example: est = tapas_fitModel(responses, inputs); tapas_hgf_ar1_plotTraj(est);
%
% --------------------------------------------------------------------------------------------------
% Copyright (C) 2013 Christoph Mathys, TNU, UZH & ETHZ
%
% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public
% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL
% (either version 3 or, at your option, any later version). For further details, see the file
% COPYING or <http://www.gnu.org/licenses/>.
% Optional plotting of standard deviations (true or false)
plotsd = true;
% Optional plotting of upper levels
plotul = false;
% Set up display
scrsz = get(0,'screenSize');
outerpos = [0.2*scrsz(3),0.2*scrsz(4),0.8*scrsz(3),0.8*scrsz(4)];
figure(...
'OuterPosition', outerpos,...
'Name', 'HGF trajectories');
% Set up colors
colors = [1 0 0; 0.67 0 1; 0 0.67 1; 0.67 1 0];
% Number of bandits
b = r.c_prc.n_bandits;
% Number of trials
n = size(r.u,1);
% Time axis
if size(r.u,2) > 2
t = r.u(:,end)';
else
t = ones(1,n);
end
ts = cumsum(t);
ts = [0, ts];
if plotul == true
% Number of levels
try
l = r.c_prc.n_levels;
catch
l = length(r.p_prc.p)/5;
end
% Upper levels
for j = 1:l-1
% Subplots
subplot(l,1,j);
if plotsd == true
upperprior = r.p_prc.mu_0(l-j+1) +sqrt(r.p_prc.sa_0(l-j+1));
lowerprior = r.p_prc.mu_0(l-j+1) -sqrt(r.p_prc.sa_0(l-j+1));
upper = [upperprior; r.traj.mu(:,l-j+1,1)+sqrt(r.traj.sa(:,l-j+1,1))];
lower = [lowerprior; r.traj.mu(:,l-j+1,1)-sqrt(r.traj.sa(:,l-j+1,1))];
plot(0, upperprior, 'ob', 'LineWidth', 1);
hold all;
plot(0, lowerprior, 'ob', 'LineWidth', 1);
fill([ts, fliplr(ts)], [(upper)', fliplr((lower)')], ...
'b', 'EdgeAlpha', 0, 'FaceAlpha', 0.15);
end
plot(ts, [r.p_prc.mu_0(l-j+1); r.traj.mu(:,l-j+1,1)], 'b', 'LineWidth', 2);
hold all;
plot(0, r.p_prc.mu_0(l-j+1), 'ob', 'LineWidth', 2); % prior
xlim([0 ts(end)]);
title(['Posterior expectation of x_' num2str(l-j+1)], 'FontWeight', 'bold');
ylabel(['\mu_', num2str(l-j+1)]);
end
% Input level
subplot(l,1,l);
end % if plotul == true
if plotsd == true
for j=1:b
upperprior = r.p_prc.mu_0(1) +sqrt(r.p_prc.sa_0(1));
lowerprior = r.p_prc.mu_0(1) -sqrt(r.p_prc.sa_0(1));
upper = [upperprior; r.traj.mu(:,1,j)+sqrt(r.traj.sa(:,1,j))];
lower = [lowerprior; r.traj.mu(:,1,j)-sqrt(r.traj.sa(:,1,j))];
plot(0, upperprior, 'o', 'Color', colors(j,:), 'LineWidth', 1);
hold all;
plot(0, lowerprior, 'o', 'Color', colors(j,:), 'LineWidth', 1);
fill([ts, fliplr(ts)], [(upper)', fliplr((lower)')], ...
colors(j,:), 'EdgeAlpha', 0, 'FaceAlpha', 0.15);
end
end
for j=1:b
plot(ts, [r.p_prc.mu_0(1); r.traj.mu(:,1,j)], 'Color', colors(j,:), 'LineWidth', 2);
hold all;
plot(0, r.p_prc.mu_0(1), 'o', 'Color', colors(j,:), 'LineWidth', 2); % prior
end
for j=2:length(ts)
plot(ts(j), r.u(j-1,1), '.', 'Color', colors(r.u(j-1,2),:)); % inputs
end
title(['Input u (green) and posterior expectations of x_1 ', ...
'(red) for \phi=', num2str(r.p_prc.phi), ', m=', num2str(r.p_prc.m), ', \kappa=', ...
num2str(r.p_prc.ka), ', \omega=', num2str(r.p_prc.om),...
', \alpha=', num2str(r.p_prc.al)], ...
'FontWeight', 'bold');
ylabel('u, \mu_1');
xlim([0 ts(end)]);
xlabel({'Trial number', ' '}); % A hack to get the relative subplot sizes right
hold off;