function [pvec, pstruct] = tapas_hgf_categorical_transp(r, ptrans)
% --------------------------------------------------------------------------------------------------
% Copyright (C) 2013 Christoph Mathys, TNU, UZH & ETHZ
%
% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public
% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL
% (either version 3 or, at your option, any later version). For further details, see the file
% COPYING or <http://www.gnu.org/licenses/>.
% Number of states whose contingencies have to be learned
no = r.c_prc.n_outcomes;
pvec = NaN(1,length(ptrans));
pstruct = struct;
pvec(1:no) = ptrans(1:no); % mu2_0
pstruct.mu2_0 = pvec(1:no);
pvec(no+1:2*no) = exp(ptrans(no+1:2*no)); % sa2_0
pstruct.sa2_0 = pvec(no+1:2*no);
pvec(2*no+1) = ptrans(2*no+1); % mu3_0
pstruct.mu3_0 = pvec(2*no+1);
pvec(2*no+2) = exp(ptrans(2*no+2)); % sa3_0
pstruct.sa3_0 = pvec(2*no+2);
pvec(2*no+3) = tapas_sgm(ptrans(2*no+3),r.c_prc.kaub); % ka
pstruct.ka = pvec(2*no+3);
pvec(2*no+4) = ptrans(2*no+4); % om
pstruct.om = pvec(2*no+4);
pvec(2*no+5) = tapas_sgm(ptrans(2*no+5),r.c_prc.thub); % th
pstruct.th = pvec(2*no+5);
return;