function [traj, infStates] = tapas_hgf_whichworld(r, p, varargin)
% Calculates the trajectories of the agent's representations under the HGF
%
% This function can be called in two ways:
%
% (1) tapas_hgf_whichworld(r, p)
%
% where r is the structure generated by tapas_fitModel and p is the parameter vector in native space;
%
% (2) tapas_hgf_whichworld(r, ptrans, 'trans')
%
% where r is the structure generated by tapas_fitModel, ptrans is the parameter vector in
% transformed space, and 'trans' is a flag indicating this.
%
% --------------------------------------------------------------------------------------------------
% Copyright (C) 2013 Christoph Mathys, TNU, UZH & ETHZ
%
% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public
% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL
% (either version 3 or, at your option, any later version). For further details, see the file
% COPYING or <http://www.gnu.org/licenses/>.
% Check whether we have a configuration structure
if ~isfield(r,'c_prc')
error('tapas:hgf:ConfigRequired', 'Configuration required: before calling tapas_hgf_whichworld, tapas_hgf_whichworld_config has to be called.');
end
% Transform paramaters back to their native space if needed
if ~isempty(varargin) && strcmp(varargin{1},'trans');
p = tapas_hgf_whichworld_transp(r, p);
end
% Number of worlds
nw = r.c_prc.nw;
% Bernoulli parameters that characterize
% worlds (column vector)
bp = [0.85; 0.15];
% Unpack parameters
mu2_0 = p(1:nw);
sa2_0 = p(nw+1:2*nw);
mu3_0 = p(2*nw+1);
sa3_0 = p(2*nw+2);
ka = p(2*nw+3);
om = p(2*nw+4);
th = p(2*nw+5);
m = p(2*nw+6);
phi = p(2*nw+7);
% Add dummy "zeroth" trial
u = [0; r.u(:,1)];
% Number of trials (including prior)
n = length(u);
% Initialize updated quantities
% Representations
mu1 = NaN(n,nw);
pi1 = NaN(n,nw);
mu2 = NaN(n,nw);
pi2 = NaN(n,nw);
mu3 = NaN(n,1);
pi3 = NaN(n,1);
% Other quantities
mu1hat = NaN(n,nw);
pi1hat = NaN(n,nw);
mu2hat = NaN(n,nw);
pi2hat = NaN(n,nw);
mu3hat = NaN(n,1);
pi3hat = NaN(n,1);
v2 = NaN(n,1);
w2 = NaN(n,nw);
da1 = NaN(n,nw);
da2 = NaN(n,nw);
% Representation priors
% Note: first entries of the other quantities remain
% NaN because they are undefined and are thrown away
% at the end; their presence simply leads to consistent
% trial indices.
mu1(1,:) = tapas_sgm(mu2_0, 1);
pi1(1,:) = 1./(mu1(1,:).*(1-mu1(1,:)));
mu2(1,:) = mu2_0;
pi2(1,:) = 1./sa2_0;
mu3(1) = mu3_0;
pi3(1) = 1/sa3_0;
% Pass through representation update loop
for k = 2:1:n
if not(ismember(k-1, r.ign))
%%%%%%%%%%%%%%%%%%%%%%
% Effect of input u(k)
%%%%%%%%%%%%%%%%%%%%%%
% 1st level
% ~~~~~~~~~
% Predictions
mu1hat(k,:) = tapas_sgm(mu2(k-1,:), 1);
% Precisions of predictions
pi1hat(k,:) = 1./(mu1hat(k,:).*(1 -mu1hat(k,:)));
% Updates (simply applying Bayes' theorem)
% Likelihood of outcome u(k)
llh = bp.^u(k).*(1-bp).^(1-u(k));
% Marginal likelihood of outcome
mllh = mu1hat(k,:)*llh;
% Posterior for each world
mu1(k,:) = mu1hat(k,:).*llh'./mllh;
% Precision of posterior
pi1(k,:) = 1./(mu1(k,:).*(1-mu1(k,:)));
% Prediction errors
da1(k,:) = mu1(k,:) -mu1hat(k,:);
% 2nd level
% ~~~~~~~~~
% Predictions
mu2hat(k,:) = mu2(k-1,:);
% Precisions of predictions
pi2hat(k,:) = 1./(1./pi2(k-1,:) +exp(ka *mu3(k-1) +om));
% Updates
pi2(k,:) = pi2hat(k,:) +1./pi1hat(k,:);
mu2(k,:) = mu2hat(k,:) +1./pi2(k,:) .*da1(k,:);
% Volatility prediction errors
da2(k,:) = (1./pi2(k,:) +(mu2(k,:) -mu2hat(k,:)).^2) .*pi2hat(k,:) -1;
% 3rd level
% ~~~~~~~~~
% Predictions
mu3hat(k) = mu3(k-1) +phi *(m -mu3(k-1));
% Precision of prediction
pi3hat(k) = 1/(1/pi3(k-1) +th);
% Weighting factors
v2(k) = exp(ka *mu3(k-1) +om);
w2(k,:) = v2(k) *pi2hat(k,:);
% Updates
pi3(k) = pi3hat(k) +1/nw*sum(1/2 *ka^2 *w2(k,:) .*(w2(k,:) +(2 *w2(k,:) -1) .*da2(k,:)));
if pi3(k) <= 0
error('tapas:hgf:NegPostPrec', 'Negative posterior precision. Parameters are in a region where model assumptions are violated.');
end
mu3(k) = mu3hat(k) +sum(1/2 *1/pi3(k) *ka *w2(k,:) .*da2(k,:));
else
mu1(k,:) = mu1(k-1,:);
pi1(k,:) = pi1(k-1,:);
mu2(k,:) = mu2(k-1,:);
pi2(k,:) = pi2(k-1,:);
mu3(k) = mu3(k-1);
pi3(k) = pi3(k-1);
mu1hat(k,:) = mu1hat(k-1,:);
pi1hat(k,:) = pi1hat(k-1,:);
mu2hat(k,:) = mu2hat(k-1,:);
pi2hat(k,:) = pi2hat(k-1,:);
mu3hat(k) = mu3hat(k-1);
pi3hat(k) = pi3hat(k-1);
v2(k) = v2(k-1);
w2(k,:) = w2(k-1,:);
da1(k,:) = da1(k-1,:);
da2(k,:) = da2(k-1,:);
end
end
% Implied learning rates at the first level
sgmmu2 = tapas_sgm(mu2, 1);
lr1 = diff(sgmmu2)./da1(2:n,:);
lr1(da(2:n,1)==0) = 0;
% Remove representation priors
mu1(1,:) = [];
pi1(1,:) = [];
mu2(1,:) = [];
pi2(1,:) = [];
mu3(1) = [];
pi3(1) = [];
% Remove other dummy initial values
mu1hat(1,:) = [];
pi1hat(1,:) = [];
mu2hat(1,:) = [];
pi2hat(1,:) = [];
mu3hat(1,:) = [];
pi3hat(1) = [];
v2(1) = [];
w2(1,:) = [];
da1(1,:) = [];
da2(1,:) = [];
% Create result data structure
traj = struct;
traj.mu = NaN(n-1,3,nw);
traj.mu(:,1,:) = mu1;
traj.mu(:,2,:) = mu2;
traj.mu(:,3,1) = mu3;
traj.sa = NaN(n-1,3,nw);
traj.sa(:,1,:) = 1./pi1;
traj.sa(:,2,:) = 1./pi2;
traj.sa(:,3,1) = 1./pi3;
traj.muhat = NaN(n-1,3,nw);
traj.muhat(:,1,:) = mu1hat;
traj.muhat(:,2,:) = mu2hat;
traj.muhat(:,3,1) = mu3hat;
traj.sahat = NaN(n-1,3,nw);
traj.sahat(:,1,:) = 1./pi1hat;
traj.sahat(:,2,:) = 1./pi2hat;
traj.sahat(:,3,1) = 1./pi3hat;
traj.v = v2;
traj.w = w2;
traj.da = NaN(n-1,2,nw);
traj.da(:,1,:) = da1;
traj.da(:,2,:) = da2;
% Updates with respect to prediction
traj.ud = traj.mu -traj.muhat;
% Psi (precision weights on prediction errors)
psi = NaN(n-1,3,nw);
psi(:,2,:) = 1./pi2;
psi(:,3,:) = diag(1./pi3) *pi2hat;
traj.psi = psi;
% Epsilons (precision-weighted prediction errors)
epsi = NaN(n-1,3,nw);
epsi(:,2,:) = squeeze(psi(:,2,:)) .*da1;
epsi(:,3,:) = squeeze(psi(:,3,:)) .*da2;
traj.epsi = epsi;
% Full learning rate (full weights on prediction errors)
wt = NaN(n-1,3,nw);
wt(:,1,:) = lr1;
wt(:,2,:) = psi(:,2,:);
wt(:,3,:) = 1/2 *ka *diag(1/pi3) *w2;
traj.wt = wt;
% Create matrices for use by the observation model
infStates = NaN(n-1,3,nw,4);
infStates(:,:,:,1) = traj.muhat;
infStates(:,:,:,2) = traj.sahat;
infStates(:,:,:,3) = traj.mu;
infStates(:,:,:,4) = traj.sa;
return;